Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Complexity estimates based on integral transforms induced by computational units

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00377111" target="_blank" >RIV/67985807:_____/12:00377111 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Complexity estimates based on integral transforms induced by computational units

  • Popis výsledku v původním jazyce

    Integral transforms with kernels corresponding to computational units are exploited to derive estimates of network complexity. The estimates are obtained by combining tools from nonlinear approximation theory and functional analysis together with representations of functions in the form of infinite neural networks. The results are applied to perceptron networks.

  • Název v anglickém jazyce

    Complexity estimates based on integral transforms induced by computational units

  • Popis výsledku anglicky

    Integral transforms with kernels corresponding to computational units are exploited to derive estimates of network complexity. The estimates are obtained by combining tools from nonlinear approximation theory and functional analysis together with representations of functions in the form of infinite neural networks. The results are applied to perceptron networks.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP202%2F11%2F1368" target="_blank" >GAP202/11/1368: Učení funkcionálních vztahů z vysoce dimenzionálních dat</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Networks

  • ISSN

    0893-6080

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

    160-167

  • Kód UT WoS článku

    000307430900015

  • EID výsledku v databázi Scopus