Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Attractor Neural Network Combined with Likelihood Maximization Algorithm for Boolean Factor Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00378749" target="_blank" >RIV/67985807:_____/12:00378749 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/12:86085643

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Attractor Neural Network Combined with Likelihood Maximization Algorithm for Boolean Factor Analysis

  • Popis výsledku v původním jazyce

    When large data sets are analyzed, the pursuit of their appropriate representation in the space of lower dimension is a common practice. Boolean factor analysis can serve as a powerful tool to solve the task, when dealing with binary data. Here we provide a short insight into a new approach to Boolean factor analysis we have developed as an extension of our previously proposed method: Hopfield-like Attractor Neural Network with Increasing Activity. We have greatly enhanced its functionality, having complemented this method by maximizing the data set likelihood function. We have defined this Likelihood function on the basis of the data generative model proposed previously. As a result, in such a way we can obtain a full set of generative model parameters. We demonstrate the efficiency of the new method using the artificial signals, which are random mixtures of horizontal and vertical bars that are a benchmark for Boolean factor analysis. Then we show that the method can be used for real

  • Název v anglickém jazyce

    Attractor Neural Network Combined with Likelihood Maximization Algorithm for Boolean Factor Analysis

  • Popis výsledku anglicky

    When large data sets are analyzed, the pursuit of their appropriate representation in the space of lower dimension is a common practice. Boolean factor analysis can serve as a powerful tool to solve the task, when dealing with binary data. Here we provide a short insight into a new approach to Boolean factor analysis we have developed as an extension of our previously proposed method: Hopfield-like Attractor Neural Network with Increasing Activity. We have greatly enhanced its functionality, having complemented this method by maximizing the data set likelihood function. We have defined this Likelihood function on the basis of the data generative model proposed previously. As a result, in such a way we can obtain a full set of generative model parameters. We demonstrate the efficiency of the new method using the artificial signals, which are random mixtures of horizontal and vertical bars that are a benchmark for Boolean factor analysis. Then we show that the method can be used for real

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Neural Networks - ISNN 2012

  • ISBN

    978-3-642-31345-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Shenyang

  • Datum konání akce

    11. 7. 2012

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku