Attractor Neural Network Combined with Likelihood Maximization Algorithm for Boolean Factor Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00378749" target="_blank" >RIV/67985807:_____/12:00378749 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/12:86085643
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Attractor Neural Network Combined with Likelihood Maximization Algorithm for Boolean Factor Analysis
Popis výsledku v původním jazyce
When large data sets are analyzed, the pursuit of their appropriate representation in the space of lower dimension is a common practice. Boolean factor analysis can serve as a powerful tool to solve the task, when dealing with binary data. Here we provide a short insight into a new approach to Boolean factor analysis we have developed as an extension of our previously proposed method: Hopfield-like Attractor Neural Network with Increasing Activity. We have greatly enhanced its functionality, having complemented this method by maximizing the data set likelihood function. We have defined this Likelihood function on the basis of the data generative model proposed previously. As a result, in such a way we can obtain a full set of generative model parameters. We demonstrate the efficiency of the new method using the artificial signals, which are random mixtures of horizontal and vertical bars that are a benchmark for Boolean factor analysis. Then we show that the method can be used for real
Název v anglickém jazyce
Attractor Neural Network Combined with Likelihood Maximization Algorithm for Boolean Factor Analysis
Popis výsledku anglicky
When large data sets are analyzed, the pursuit of their appropriate representation in the space of lower dimension is a common practice. Boolean factor analysis can serve as a powerful tool to solve the task, when dealing with binary data. Here we provide a short insight into a new approach to Boolean factor analysis we have developed as an extension of our previously proposed method: Hopfield-like Attractor Neural Network with Increasing Activity. We have greatly enhanced its functionality, having complemented this method by maximizing the data set likelihood function. We have defined this Likelihood function on the basis of the data generative model proposed previously. As a result, in such a way we can obtain a full set of generative model parameters. We demonstrate the efficiency of the new method using the artificial signals, which are random mixtures of horizontal and vertical bars that are a benchmark for Boolean factor analysis. Then we show that the method can be used for real
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Neural Networks - ISNN 2012
ISBN
978-3-642-31345-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Shenyang
Datum konání akce
11. 7. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—