Associativity of triangular norms characterized by the geometry of their level sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00381684" target="_blank" >RIV/67985807:_____/12:00381684 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Associativity of triangular norms characterized by the geometry of their level sets
Popis výsledku v původním jazyce
Associativity of triangular norms is an algebraic property which, unlike for example their commutativity, is usually understood as hardly visually interpretable. This problem has been studied intensively in the last decade and, as a result, geometric symmetries of triangular norms with involutive level sets have been revealed. The presented paper intends to introduce a different approach which gives more general results. The inspiration is taken from web geometry, a branch of differential geometry, andits concept of Reidemeister closure condition which is known to provide a geometric characterization of associativity of loops. The paper shows that this concept can be adopted successfully for triangular norms so that it characterizes their associativity in a similar way. Moreover, the offered adaptation preserves the beneficial transparency and simplicity of the Reidemeister closure condition. This way, a visual characterization of the associativity, based on the geometry of the level
Název v anglickém jazyce
Associativity of triangular norms characterized by the geometry of their level sets
Popis výsledku anglicky
Associativity of triangular norms is an algebraic property which, unlike for example their commutativity, is usually understood as hardly visually interpretable. This problem has been studied intensively in the last decade and, as a result, geometric symmetries of triangular norms with involutive level sets have been revealed. The presented paper intends to introduce a different approach which gives more general results. The inspiration is taken from web geometry, a branch of differential geometry, andits concept of Reidemeister closure condition which is known to provide a geometric characterization of associativity of loops. The paper shows that this concept can be adopted successfully for triangular norms so that it characterizes their associativity in a similar way. Moreover, the offered adaptation preserves the beneficial transparency and simplicity of the Reidemeister closure condition. This way, a visual characterization of the associativity, based on the geometry of the level
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F1826" target="_blank" >GAP202/10/1826: Matematická fuzzy logika v informatice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Svazek periodika
202
Číslo periodika v rámci svazku
1 September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
100-109
Kód UT WoS článku
000306886100006
EID výsledku v databázi Scopus
—