Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Associativity of triangular norms characterized by the geometry of their level sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00381684" target="_blank" >RIV/67985807:_____/12:00381684 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Associativity of triangular norms characterized by the geometry of their level sets

  • Popis výsledku v původním jazyce

    Associativity of triangular norms is an algebraic property which, unlike for example their commutativity, is usually understood as hardly visually interpretable. This problem has been studied intensively in the last decade and, as a result, geometric symmetries of triangular norms with involutive level sets have been revealed. The presented paper intends to introduce a different approach which gives more general results. The inspiration is taken from web geometry, a branch of differential geometry, andits concept of Reidemeister closure condition which is known to provide a geometric characterization of associativity of loops. The paper shows that this concept can be adopted successfully for triangular norms so that it characterizes their associativity in a similar way. Moreover, the offered adaptation preserves the beneficial transparency and simplicity of the Reidemeister closure condition. This way, a visual characterization of the associativity, based on the geometry of the level

  • Název v anglickém jazyce

    Associativity of triangular norms characterized by the geometry of their level sets

  • Popis výsledku anglicky

    Associativity of triangular norms is an algebraic property which, unlike for example their commutativity, is usually understood as hardly visually interpretable. This problem has been studied intensively in the last decade and, as a result, geometric symmetries of triangular norms with involutive level sets have been revealed. The presented paper intends to introduce a different approach which gives more general results. The inspiration is taken from web geometry, a branch of differential geometry, andits concept of Reidemeister closure condition which is known to provide a geometric characterization of associativity of loops. The paper shows that this concept can be adopted successfully for triangular norms so that it characterizes their associativity in a similar way. Moreover, the offered adaptation preserves the beneficial transparency and simplicity of the Reidemeister closure condition. This way, a visual characterization of the associativity, based on the geometry of the level

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP202%2F10%2F1826" target="_blank" >GAP202/10/1826: Matematická fuzzy logika v informatice</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fuzzy Sets and Systems

  • ISSN

    0165-0114

  • e-ISSN

  • Svazek periodika

    202

  • Číslo periodika v rámci svazku

    1 September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    100-109

  • Kód UT WoS článku

    000306886100006

  • EID výsledku v databázi Scopus