Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Graded properties of unary and binary fuzzy connectives

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00384236" target="_blank" >RIV/67985807:_____/12:00384236 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Graded properties of unary and binary fuzzy connectives

  • Popis výsledku v původním jazyce

    The paper studies basic graded properties of unary and binary fuzzy connectives, i.e., unary and binary operations on the set of truth degrees of a background fuzzy logic extending the logic MTL of left-continuous t-norms. The properties studied in thispaper are graded generalizations of monotony, Lipschitz continuity, null and unit elements, idempotence, commutativity, and associativity. The paper elaborates the initial study presented in previous papers and focuses mainly on parameterization of graded properties by conjunction-multiplicities of subformulae in the defining formulae, preservation of graded properties under compositions and slight variations of fuzzy connectives, the values of graded properties for basic connectives of the ground logic, and the dependence of the values on the ground logic. The results are proved in the formal framework of higher-order fuzzy logic MTL, also known as Fuzzy Class Theory (FCT). General theorems provable in FCT are illustrated on several se

  • Název v anglickém jazyce

    Graded properties of unary and binary fuzzy connectives

  • Popis výsledku anglicky

    The paper studies basic graded properties of unary and binary fuzzy connectives, i.e., unary and binary operations on the set of truth degrees of a background fuzzy logic extending the logic MTL of left-continuous t-norms. The properties studied in thispaper are graded generalizations of monotony, Lipschitz continuity, null and unit elements, idempotence, commutativity, and associativity. The paper elaborates the initial study presented in previous papers and focuses mainly on parameterization of graded properties by conjunction-multiplicities of subformulae in the defining formulae, preservation of graded properties under compositions and slight variations of fuzzy connectives, the values of graded properties for basic connectives of the ground logic, and the dependence of the values on the ground logic. The results are proved in the formal framework of higher-order fuzzy logic MTL, also known as Fuzzy Class Theory (FCT). General theorems provable in FCT are illustrated on several se

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GPP103%2F10%2FP234" target="_blank" >GPP103/10/P234: Fuzzy matematika s logickými základy</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Fuzzy Sets and Systems

  • ISSN

    0165-0114

  • e-ISSN

  • Svazek periodika

    202

  • Číslo periodika v rámci svazku

    1 September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    41

  • Strana od-do

    1-41

  • Kód UT WoS článku

    000306886100001

  • EID výsledku v databázi Scopus