Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Nonlinear Trend Modeling in the Analysis of Categorical Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00389627" target="_blank" >RIV/67985807:_____/12:00389627 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://msed.vse.cz/files/2012/Kalina_2012.pdf" target="_blank" >http://msed.vse.cz/files/2012/Kalina_2012.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Nonlinear Trend Modeling in the Analysis of Categorical Data

  • Popis výsledku v původním jazyce

    This paper studies various approaches to testing trend in the context of categorical data. While the linear trend is far more popular in econometric applications, a nonlinear modeling of the trend allows a more subtle information extraction from real data, especially if the linearity of the trend cannot be expected and verified by hypothesis testing. We exploit the exact unconditional approach to propose alternative versions of some trend tests. One of them is the test of relaxed trend (Liu, 1998), whoproposed a generalization of the classical Cochran- Armitage test of linear trend. A numerical example on real data reveals the advantages of the test of relaxed trend compared to the classical test of linear trend. Further, we propose an exact unconditional test also for modeling association between an ordinal response and nominal regressor. Further, we propose a robust estimator of parameters in the logistic regression model, which is based on implicit weighting of individual observati

  • Název v anglickém jazyce

    Nonlinear Trend Modeling in the Analysis of Categorical Data

  • Popis výsledku anglicky

    This paper studies various approaches to testing trend in the context of categorical data. While the linear trend is far more popular in econometric applications, a nonlinear modeling of the trend allows a more subtle information extraction from real data, especially if the linearity of the trend cannot be expected and verified by hypothesis testing. We exploit the exact unconditional approach to propose alternative versions of some trend tests. One of them is the test of relaxed trend (Liu, 1998), whoproposed a generalization of the classical Cochran- Armitage test of linear trend. A numerical example on real data reveals the advantages of the test of relaxed trend compared to the classical test of linear trend. Further, we propose an exact unconditional test also for modeling association between an ordinal response and nominal regressor. Further, we propose a robust estimator of parameters in the logistic regression model, which is based on implicit weighting of individual observati

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2012

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    International Days of Statistics and Economics

  • ISBN

    978-80-86175-86-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    519-529

  • Název nakladatele

    Melandrium

  • Místo vydání

    Slaný

  • Místo konání akce

    Prague

  • Datum konání akce

    13. 9. 2012

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000320722500048