Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Highly Robust Methods in Data Mining

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00389648" target="_blank" >RIV/67985807:_____/13:00389648 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Highly Robust Methods in Data Mining

  • Popis výsledku v původním jazyce

    This paper is devoted to highly robust methods for information extraction from data, with a special attention paid to methods suitable for management applications. The sensitivity of available data mining methods to the presence of outlying measurementsin the observed data is discussed as a major drawback of available data mining methods. The paper proposes several newhighly robust methods for data mining, which are based on the idea of implicit weighting of individual data values. Particularly it propose a novel robust method of hierarchical cluster analysis, which is a popular data mining method of unsupervised learning. Further, a robust method for estimating parameters in the logistic regression was proposed. This idea is extended to a robust multinomial logistic classification analysis. Finally, the sensitivity of neural networks to the presence of noise and outlying measurements in the data was discussed. The method for robust training of neural networks for the task of function

  • Název v anglickém jazyce

    Highly Robust Methods in Data Mining

  • Popis výsledku anglicky

    This paper is devoted to highly robust methods for information extraction from data, with a special attention paid to methods suitable for management applications. The sensitivity of available data mining methods to the presence of outlying measurementsin the observed data is discussed as a major drawback of available data mining methods. The paper proposes several newhighly robust methods for data mining, which are based on the idea of implicit weighting of individual data values. Particularly it propose a novel robust method of hierarchical cluster analysis, which is a popular data mining method of unsupervised learning. Further, a robust method for estimating parameters in the logistic regression was proposed. This idea is extended to a robust multinomial logistic classification analysis. Finally, the sensitivity of neural networks to the presence of noise and outlying measurements in the data was discussed. The method for robust training of neural networks for the task of function

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Serbian Journal of Management

  • ISSN

    1452-4864

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    RS - Srbská republika

  • Počet stran výsledku

    16

  • Strana od-do

    9-24

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus