Highly Robust Methods in Data Mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00389648" target="_blank" >RIV/67985807:_____/13:00389648 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Highly Robust Methods in Data Mining
Popis výsledku v původním jazyce
This paper is devoted to highly robust methods for information extraction from data, with a special attention paid to methods suitable for management applications. The sensitivity of available data mining methods to the presence of outlying measurementsin the observed data is discussed as a major drawback of available data mining methods. The paper proposes several newhighly robust methods for data mining, which are based on the idea of implicit weighting of individual data values. Particularly it propose a novel robust method of hierarchical cluster analysis, which is a popular data mining method of unsupervised learning. Further, a robust method for estimating parameters in the logistic regression was proposed. This idea is extended to a robust multinomial logistic classification analysis. Finally, the sensitivity of neural networks to the presence of noise and outlying measurements in the data was discussed. The method for robust training of neural networks for the task of function
Název v anglickém jazyce
Highly Robust Methods in Data Mining
Popis výsledku anglicky
This paper is devoted to highly robust methods for information extraction from data, with a special attention paid to methods suitable for management applications. The sensitivity of available data mining methods to the presence of outlying measurementsin the observed data is discussed as a major drawback of available data mining methods. The paper proposes several newhighly robust methods for data mining, which are based on the idea of implicit weighting of individual data values. Particularly it propose a novel robust method of hierarchical cluster analysis, which is a popular data mining method of unsupervised learning. Further, a robust method for estimating parameters in the logistic regression was proposed. This idea is extended to a robust multinomial logistic classification analysis. Finally, the sensitivity of neural networks to the presence of noise and outlying measurements in the data was discussed. The method for robust training of neural networks for the task of function
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Serbian Journal of Management
ISSN
1452-4864
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
RS - Srbská republika
Počet stran výsledku
16
Strana od-do
9-24
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—