Capabilities of Radial and Kernel Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00396949" target="_blank" >RIV/67985807:_____/13:00396949 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Capabilities of Radial and Kernel Networks
Popis výsledku v původním jazyce
Originally, artificial neural networks were built from biologically inspired units called perceptrons. Later, other types of units became popular in neurocomputing due to their good mathematical properties. Among them, radial-basis-function (RBF) units and kernel units became most popular. The talk will discuss advantages and limitations of networks with these two types of computational units. Higher flexibility in choice of free parameters in RBF will be compared with benefits of geometrical propertiesof kernel models allowing applications of maximal margin classification algorithms, modelling of generalization in learning from data in terms of regularization, and characterization of optimal solutions of learning tasks. Critical influence of input dimension on behavior of these two types of networks will be described. General results will be illustrated by the paradigmatic examples of Gaussian kernel and radial networks.
Název v anglickém jazyce
Capabilities of Radial and Kernel Networks
Popis výsledku anglicky
Originally, artificial neural networks were built from biologically inspired units called perceptrons. Later, other types of units became popular in neurocomputing due to their good mathematical properties. Among them, radial-basis-function (RBF) units and kernel units became most popular. The talk will discuss advantages and limitations of networks with these two types of computational units. Higher flexibility in choice of free parameters in RBF will be compared with benefits of geometrical propertiesof kernel models allowing applications of maximal margin classification algorithms, modelling of generalization in learning from data in terms of regularization, and characterization of optimal solutions of learning tasks. Critical influence of input dimension on behavior of these two types of networks will be described. General results will be illustrated by the paradigmatic examples of Gaussian kernel and radial networks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LD13002" target="_blank" >LD13002: Modelování složitých systémů softcomputingovými metodami</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
MENDEL 2013
ISBN
978-80-214-4755-4
ISSN
1803-3814
e-ISSN
—
Počet stran výsledku
6
Strana od-do
233-238
Název nakladatele
University of Technology
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
26. 6. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—