Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Capabilities of Radial and Kernel Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00396949" target="_blank" >RIV/67985807:_____/13:00396949 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Capabilities of Radial and Kernel Networks

  • Popis výsledku v původním jazyce

    Originally, artificial neural networks were built from biologically inspired units called perceptrons. Later, other types of units became popular in neurocomputing due to their good mathematical properties. Among them, radial-basis-function (RBF) units and kernel units became most popular. The talk will discuss advantages and limitations of networks with these two types of computational units. Higher flexibility in choice of free parameters in RBF will be compared with benefits of geometrical propertiesof kernel models allowing applications of maximal margin classification algorithms, modelling of generalization in learning from data in terms of regularization, and characterization of optimal solutions of learning tasks. Critical influence of input dimension on behavior of these two types of networks will be described. General results will be illustrated by the paradigmatic examples of Gaussian kernel and radial networks.

  • Název v anglickém jazyce

    Capabilities of Radial and Kernel Networks

  • Popis výsledku anglicky

    Originally, artificial neural networks were built from biologically inspired units called perceptrons. Later, other types of units became popular in neurocomputing due to their good mathematical properties. Among them, radial-basis-function (RBF) units and kernel units became most popular. The talk will discuss advantages and limitations of networks with these two types of computational units. Higher flexibility in choice of free parameters in RBF will be compared with benefits of geometrical propertiesof kernel models allowing applications of maximal margin classification algorithms, modelling of generalization in learning from data in terms of regularization, and characterization of optimal solutions of learning tasks. Critical influence of input dimension on behavior of these two types of networks will be described. General results will be illustrated by the paradigmatic examples of Gaussian kernel and radial networks.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LD13002" target="_blank" >LD13002: Modelování složitých systémů softcomputingovými metodami</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    MENDEL 2013

  • ISBN

    978-80-214-4755-4

  • ISSN

    1803-3814

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    233-238

  • Název nakladatele

    University of Technology

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    26. 6. 2013

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku