Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Performance of classification confidence measures in dynamic classifier systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00423771" target="_blank" >RIV/67985807:_____/13:00423771 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Performance of classification confidence measures in dynamic classifier systems

  • Popis výsledku v původním jazyce

    Classifier combining is a popular technique for improving classification quality. Common methods for classifier combining can be further improved by using dynamic classification confidence measures which adapt to the currently classified pattern. However, in the case of dynamic classifier systems, the classification confidence measures need to be studied in a broader context as we show in this paper, the degree of consensus of the whole classifier team plays a key role in the process. We discuss the properties which should hold for a good confidence measure, and we define two methods for predicting the feasibility of a given classification confidence measure to a given classifier team and given data. Experimental results on 6 artificial and 20 real-world benchmark datasets show that for both methods, there is a statistically significant correlation between the feasibility of the measure, and the actual improvement in classification accuracy of the whole classifier system; therefore, bo

  • Název v anglickém jazyce

    Performance of classification confidence measures in dynamic classifier systems

  • Popis výsledku anglicky

    Classifier combining is a popular technique for improving classification quality. Common methods for classifier combining can be further improved by using dynamic classification confidence measures which adapt to the currently classified pattern. However, in the case of dynamic classifier systems, the classification confidence measures need to be studied in a broader context as we show in this paper, the degree of consensus of the whole classifier team plays a key role in the process. We discuss the properties which should hold for a good confidence measure, and we define two methods for predicting the feasibility of a given classification confidence measure to a given classifier team and given data. Experimental results on 6 artificial and 20 real-world benchmark datasets show that for both methods, there is a statistically significant correlation between the feasibility of the measure, and the actual improvement in classification accuracy of the whole classifier system; therefore, bo

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-17187S" target="_blank" >GA13-17187S: Konstrukce pokročilých srozumitelných klasifikátorů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    21

  • Strana od-do

    299-319

  • Kód UT WoS článku

    000325193300003

  • EID výsledku v databázi Scopus