Energy Complexity of Recurrent Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00393985" target="_blank" >RIV/67985807:_____/14:00393985 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1162/NECO_a_00579" target="_blank" >http://dx.doi.org/10.1162/NECO_a_00579</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/NECO_a_00579" target="_blank" >10.1162/NECO_a_00579</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy Complexity of Recurrent Neural Networks
Popis výsledku v původním jazyce
Recently, a new so-called energy complexity measure has been introduced and studied for feedforward perceptron networks. This measure is inspired by the fact that biological neurons require more energy to transmit a spike than not to fire, and the activity of neurons in the brain is quite sparse, with only about 1% of neurons firing. In this paper, we investigate the energy complexity of recurrent networks which counts the number of active neurons at any time instant of a computation. We prove that anydeterministic finite automaton with m states can be simulated by a neural network of optimal size s=Theta(sqrt{m}) with the time overhead of tau=O(s/e) per one input bit, using the energy O(e), for any e such that e=Omega(log s) and e=O(s), which shows the time-energy tradeoff in recurrent networks. In addition, for the time overhead tau satisfying tau^tau=o(s), we obtain the lower bound of s^{c/tau} on the energy of such a simulation, for some constant c>0 and for infinitely ma
Název v anglickém jazyce
Energy Complexity of Recurrent Neural Networks
Popis výsledku anglicky
Recently, a new so-called energy complexity measure has been introduced and studied for feedforward perceptron networks. This measure is inspired by the fact that biological neurons require more energy to transmit a spike than not to fire, and the activity of neurons in the brain is quite sparse, with only about 1% of neurons firing. In this paper, we investigate the energy complexity of recurrent networks which counts the number of active neurons at any time instant of a computation. We prove that anydeterministic finite automaton with m states can be simulated by a neural network of optimal size s=Theta(sqrt{m}) with the time overhead of tau=O(s/e) per one input bit, using the energy O(e), for any e such that e=Omega(log s) and e=O(s), which shows the time-energy tradeoff in recurrent networks. In addition, for the time overhead tau satisfying tau^tau=o(s), we obtain the lower bound of s^{c/tau} on the energy of such a simulation, for some constant c>0 and for infinitely ma
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F1333" target="_blank" >GAP202/10/1333: NoSCoM: Nestandardní výpočetní modely a jejich aplikace ve složitosti, lingvistice a učení</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computation
ISSN
0899-7667
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
953-973
Kód UT WoS článku
000334027800005
EID výsledku v databázi Scopus
—