Highway Truck Parking Prediction System and Statistical Modeling Underlying its Development
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00442563" target="_blank" >RIV/67985807:_____/14:00442563 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Highway Truck Parking Prediction System and Statistical Modeling Underlying its Development
Popis výsledku v původním jazyce
In this paper, we will describe a system for on-line prediction of truck parking demand along highway system in the Czech Republic. We will describe structure of the system developed during the TACR TA02031411 project and mention some of its specific functionalities. Further, we will explain in detail statistical modeling methodology which underlies the forecasting model in the core of the prediction procedure. Whole system relies on the use of indirect but very precise and relatively cheap to obtain toll transaction data (accessible through a cooperation with Kapsch Telematic Services, Inc.). Our statistical modeling starts with a recognition of the fact that the number of trucks parking at a given lot and given time is a latent variable to be estimated from the observable toll transaction data (which are available in the form of times when individual truck pass toll gates). After constructing appropriate proxy variable, we formulate a flexible class of statistical semi-parametric mod
Název v anglickém jazyce
Highway Truck Parking Prediction System and Statistical Modeling Underlying its Development
Popis výsledku anglicky
In this paper, we will describe a system for on-line prediction of truck parking demand along highway system in the Czech Republic. We will describe structure of the system developed during the TACR TA02031411 project and mention some of its specific functionalities. Further, we will explain in detail statistical modeling methodology which underlies the forecasting model in the core of the prediction procedure. Whole system relies on the use of indirect but very precise and relatively cheap to obtain toll transaction data (accessible through a cooperation with Kapsch Telematic Services, Inc.). Our statistical modeling starts with a recognition of the fact that the number of trucks parking at a given lot and given time is a latent variable to be estimated from the observable toll transaction data (which are available in the form of times when individual truck pass toll gates). After constructing appropriate proxy variable, we formulate a flexible class of statistical semi-parametric mod
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TA02031411" target="_blank" >TA02031411: Zvýšení využití parkovací kapacity na dálnicích za pomoci predikčních modelů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Second International Conference on Traffic and Transport Engineering
ISBN
978-86-916153-2-1
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
164-170
Název nakladatele
City Net Scientific Research Center
Místo vydání
Belgrade
Místo konání akce
Belgrade
Datum konání akce
27. 11. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000348569200021