Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spectral Diagonal Ensemble Kalman Filters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00446922" target="_blank" >RIV/67985807:_____/15:00446922 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.5194/npg-22-485-2015" target="_blank" >http://dx.doi.org/10.5194/npg-22-485-2015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/npg-22-485-2015" target="_blank" >10.5194/npg-22-485-2015</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spectral Diagonal Ensemble Kalman Filters

  • Popis výsledku v původním jazyce

    A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the approximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.

  • Název v anglickém jazyce

    Spectral Diagonal Ensemble Kalman Filters

  • Popis výsledku anglicky

    A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the approximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    DG - Vědy o atmosféře, meteorologie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-34856S" target="_blank" >GA13-34856S: Pokročilé metody náhodných polí v asimilaci dat pro krátkodobou předpověď počasí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinear Processes in Geophysics

  • ISSN

    1023-5809

  • e-ISSN

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    13

  • Strana od-do

    485-497

  • Kód UT WoS článku

    000360655400010

  • EID výsledku v databázi Scopus

    2-s2.0-84939635044