Densification of FL Chains via Residuated Frames
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00438994" target="_blank" >RIV/67985807:_____/16:00438994 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00012-016-0372-5" target="_blank" >http://dx.doi.org/10.1007/s00012-016-0372-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-016-0372-5" target="_blank" >10.1007/s00012-016-0372-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Densification of FL Chains via Residuated Frames
Popis výsledku v původním jazyce
We introduce a systematic method for densification, i.e., embedding a given chain into a dense one preserving certain identities, in the framework of FL algebras (pointed residuated lattices). Our method, based on residuated frames, offers a uniform proof for many of the known densification and standard completeness results in the literature. We propose a syntactic criterion for densification, called semi-anchoredness. We then prove that the semilinear varieties of integral FL algebras defined by semi-anchored equations admit densification, so that the corresponding fuzzy logics are standard complete. Our method also applies to (possibly non-integral) commutative FL chains. We prove that the semilinear varieties of commutative FL algebras defined by knotted axioms x^m<=x^n (with m, n > 1) admit densification. It provides a purely algebraic proof to the standard completeness of uninorm logic as well as its extensions by knotted axioms.
Název v anglickém jazyce
Densification of FL Chains via Residuated Frames
Popis výsledku anglicky
We introduce a systematic method for densification, i.e., embedding a given chain into a dense one preserving certain identities, in the framework of FL algebras (pointed residuated lattices). Our method, based on residuated frames, offers a uniform proof for many of the known densification and standard completeness results in the literature. We propose a syntactic criterion for densification, called semi-anchoredness. We then prove that the semilinear varieties of integral FL algebras defined by semi-anchored equations admit densification, so that the corresponding fuzzy logics are standard complete. Our method also applies to (possibly non-integral) commutative FL chains. We prove that the semilinear varieties of commutative FL algebras defined by knotted axioms x^m<=x^n (with m, n > 1) admit densification. It provides a purely algebraic proof to the standard completeness of uninorm logic as well as its extensions by knotted axioms.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F1826" target="_blank" >GAP202/10/1826: Matematická fuzzy logika v informatice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Svazek periodika
75
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
169-195
Kód UT WoS článku
000375423100003
EID výsledku v databázi Scopus
2-s2.0-84957958237