Data Assimilation of Dead Fuel Moisture Observations from Remote automated Weather Stations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00459808" target="_blank" >RIV/67985807:_____/16:00459808 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1071/WF14085" target="_blank" >http://dx.doi.org/10.1071/WF14085</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1071/WF14085" target="_blank" >10.1071/WF14085</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data Assimilation of Dead Fuel Moisture Observations from Remote automated Weather Stations
Popis výsledku v původním jazyce
Fuel moisture has a major influence on the behaviour of wildland fires and is an important underlying factor in fire risk assessment. We propose a method to assimilate dead fuel moisture content (FMC) observations from remote automated weather stations (RAWS) into a time lag fuel moisture model. RAWS are spatially sparse and a mechanism is needed to estimate fuel moisture content at locations potentially distant from observational stations. This is arranged using a trend surface model (TSM), which allows us to account for the effects of topography and atmospheric state on the spatial variability of FMC. At each location of interest, the TSM provides a pseudo-observation, which is assimilated via Kalman filtering. The method is tested with the time lag fuel moisture model in the coupled weather-fire code WRF–SFIRE on 10-h FMC observations from Colorado RAWS in 2013. Using leave-one-out testing we show that the TSM compares favourably with inverse squared distance interpolation as used in the Wildland Fire Assessment System. Finally, we demonstrate that the data assimilation method is able to improve on FMC estimates in unobserved fuel classes.
Název v anglickém jazyce
Data Assimilation of Dead Fuel Moisture Observations from Remote automated Weather Stations
Popis výsledku anglicky
Fuel moisture has a major influence on the behaviour of wildland fires and is an important underlying factor in fire risk assessment. We propose a method to assimilate dead fuel moisture content (FMC) observations from remote automated weather stations (RAWS) into a time lag fuel moisture model. RAWS are spatially sparse and a mechanism is needed to estimate fuel moisture content at locations potentially distant from observational stations. This is arranged using a trend surface model (TSM), which allows us to account for the effects of topography and atmospheric state on the spatial variability of FMC. At each location of interest, the TSM provides a pseudo-observation, which is assimilated via Kalman filtering. The method is tested with the time lag fuel moisture model in the coupled weather-fire code WRF–SFIRE on 10-h FMC observations from Colorado RAWS in 2013. Using leave-one-out testing we show that the TSM compares favourably with inverse squared distance interpolation as used in the Wildland Fire Assessment System. Finally, we demonstrate that the data assimilation method is able to improve on FMC estimates in unobserved fuel classes.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DG - Vědy o atmosféře, meteorologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-34856S" target="_blank" >GA13-34856S: Pokročilé metody náhodných polí v asimilaci dat pro krátkodobou předpověď počasí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Wildland Fire
ISSN
1049-8001
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
AU - Austrálie
Počet stran výsledku
11
Strana od-do
558-568
Kód UT WoS článku
000375877900006
EID výsledku v databázi Scopus
2-s2.0-84968835226