On Computability and Triviality of Well Groups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00459972" target="_blank" >RIV/67985807:_____/16:00459972 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00454-016-9794-2" target="_blank" >http://dx.doi.org/10.1007/s00454-016-9794-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-016-9794-2" target="_blank" >10.1007/s00454-016-9794-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Computability and Triviality of Well Groups
Popis výsledku v původním jazyce
The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f: K -> R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within distance r from f for a given r>0 in the max-norm. The main drawback of the approach is that the computability of well groups was shown only when dim K=n or n=1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f,f’: K -> R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status.
Název v anglickém jazyce
On Computability and Triviality of Well Groups
Popis výsledku anglicky
The concept of well group in a special but important case captures homological properties of the zero set of a continuous map f: K -> R^n on a compact space K that are invariant with respect to perturbations of f. The perturbations are arbitrary continuous maps within distance r from f for a given r>0 in the max-norm. The main drawback of the approach is that the computability of well groups was shown only when dim K=n or n=1. Our contribution to the theory of well groups is twofold: on the one hand we improve on the computability issue, but on the other hand we present a range of examples where the well groups are incomplete invariants, that is, fail to capture certain important robust properties of the zero set. For the first part, we identify a computable subgroup of the well group that is obtained by cap product with the pullback of the orientation of R^n by f. In other words, well groups can be algorithmically approximated from below. When f is smooth and dim K < 2n-2, our approximation of the (dim K-n)th well group is exact. For the second part, we find examples of maps f,f’: K -> R^n with all well groups isomorphic but whose perturbations have different zero sets. We discuss on a possible replacement of the well groups of vector valued maps by an invariant of a better descriptive power and computability status.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-14484S" target="_blank" >GA15-14484S: Výpočet robustních invariantů hybridních dynamických systémů s využitím simulací</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete & Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
126-164
Kód UT WoS článku
000377722100005
EID výsledku v databázi Scopus
2-s2.0-84973161597