The Semantic Isomorphism Theorem in Abstract Algebraic Logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00465843" target="_blank" >RIV/67985807:_____/16:00465843 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.apal.2016.08.001" target="_blank" >http://dx.doi.org/10.1016/j.apal.2016.08.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2016.08.001" target="_blank" >10.1016/j.apal.2016.08.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Semantic Isomorphism Theorem in Abstract Algebraic Logic
Popis výsledku v původním jazyce
One of the most interesting aspects of Blok and Pigozzi's algebraizability theory is that the notion of algebraizable logic L can be characterised by means of Syntactic and Semantic Isomorphism Theorems. While the Syntactic Isomorphism Theorem concerns the relation between the theories of the algebraizable logic L and those of the equational consequence relative to its equivalent algebraic semantics K, the Semantic Isomorphism Theorem describes the interplay between the filters of L on an arbitrary algebra A and the congruences of A relative to K. The pioneering insight of Blok and Jónsson, and the further generalizations by Galatos, Tsinakis, Gil-Férez and Russo, showed that the concept of algebraizability was not intrinsic to the connection between a logic and an equational consequence, thus inaugurating the abstract theory of equivalence between structural closure operators. However all these works focus only on the Syntactic Isomorphism Theorem, disregarding the semantic aspects present in the original theory. In this paper we fill this gap by introducing the notion of compositional lattice, which acts on a category of evaluational frames. In this new framework the non-linguistic flavour of the Semantic Isomorphism Theorem can be naturally recovered. In particular, we solve the problem of finding sufficient and necessary conditions for transferring a purely syntactic equivalence to the semantic level as in the Semantic Isomorphism Theorem.
Název v anglickém jazyce
The Semantic Isomorphism Theorem in Abstract Algebraic Logic
Popis výsledku anglicky
One of the most interesting aspects of Blok and Pigozzi's algebraizability theory is that the notion of algebraizable logic L can be characterised by means of Syntactic and Semantic Isomorphism Theorems. While the Syntactic Isomorphism Theorem concerns the relation between the theories of the algebraizable logic L and those of the equational consequence relative to its equivalent algebraic semantics K, the Semantic Isomorphism Theorem describes the interplay between the filters of L on an arbitrary algebra A and the congruences of A relative to K. The pioneering insight of Blok and Jónsson, and the further generalizations by Galatos, Tsinakis, Gil-Férez and Russo, showed that the concept of algebraizability was not intrinsic to the connection between a logic and an equational consequence, thus inaugurating the abstract theory of equivalence between structural closure operators. However all these works focus only on the Syntactic Isomorphism Theorem, disregarding the semantic aspects present in the original theory. In this paper we fill this gap by introducing the notion of compositional lattice, which acts on a category of evaluational frames. In this new framework the non-linguistic flavour of the Semantic Isomorphism Theorem can be naturally recovered. In particular, we solve the problem of finding sufficient and necessary conditions for transferring a purely syntactic equivalence to the semantic level as in the Semantic Isomorphism Theorem.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-14654S" target="_blank" >GA13-14654S: Neklasické výrokové a predikátové logiky: přístup založený na uspořádání</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Svazek periodika
167
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
34
Strana od-do
1298-1331
Kód UT WoS článku
000385604800006
EID výsledku v databázi Scopus
2-s2.0-84989871444