Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Semantic Isomorphism Theorem in Abstract Algebraic Logic

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00465843" target="_blank" >RIV/67985807:_____/16:00465843 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.apal.2016.08.001" target="_blank" >http://dx.doi.org/10.1016/j.apal.2016.08.001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apal.2016.08.001" target="_blank" >10.1016/j.apal.2016.08.001</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Semantic Isomorphism Theorem in Abstract Algebraic Logic

  • Popis výsledku v původním jazyce

    One of the most interesting aspects of Blok and Pigozzi's algebraizability theory is that the notion of algebraizable logic L can be characterised by means of Syntactic and Semantic Isomorphism Theorems. While the Syntactic Isomorphism Theorem concerns the relation between the theories of the algebraizable logic L and those of the equational consequence relative to its equivalent algebraic semantics K, the Semantic Isomorphism Theorem describes the interplay between the filters of L on an arbitrary algebra A and the congruences of A relative to K. The pioneering insight of Blok and Jónsson, and the further generalizations by Galatos, Tsinakis, Gil-Férez and Russo, showed that the concept of algebraizability was not intrinsic to the connection between a logic and an equational consequence, thus inaugurating the abstract theory of equivalence between structural closure operators. However all these works focus only on the Syntactic Isomorphism Theorem, disregarding the semantic aspects present in the original theory. In this paper we fill this gap by introducing the notion of compositional lattice, which acts on a category of evaluational frames. In this new framework the non-linguistic flavour of the Semantic Isomorphism Theorem can be naturally recovered. In particular, we solve the problem of finding sufficient and necessary conditions for transferring a purely syntactic equivalence to the semantic level as in the Semantic Isomorphism Theorem.

  • Název v anglickém jazyce

    The Semantic Isomorphism Theorem in Abstract Algebraic Logic

  • Popis výsledku anglicky

    One of the most interesting aspects of Blok and Pigozzi's algebraizability theory is that the notion of algebraizable logic L can be characterised by means of Syntactic and Semantic Isomorphism Theorems. While the Syntactic Isomorphism Theorem concerns the relation between the theories of the algebraizable logic L and those of the equational consequence relative to its equivalent algebraic semantics K, the Semantic Isomorphism Theorem describes the interplay between the filters of L on an arbitrary algebra A and the congruences of A relative to K. The pioneering insight of Blok and Jónsson, and the further generalizations by Galatos, Tsinakis, Gil-Férez and Russo, showed that the concept of algebraizability was not intrinsic to the connection between a logic and an equational consequence, thus inaugurating the abstract theory of equivalence between structural closure operators. However all these works focus only on the Syntactic Isomorphism Theorem, disregarding the semantic aspects present in the original theory. In this paper we fill this gap by introducing the notion of compositional lattice, which acts on a category of evaluational frames. In this new framework the non-linguistic flavour of the Semantic Isomorphism Theorem can be naturally recovered. In particular, we solve the problem of finding sufficient and necessary conditions for transferring a purely syntactic equivalence to the semantic level as in the Semantic Isomorphism Theorem.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-14654S" target="_blank" >GA13-14654S: Neklasické výrokové a predikátové logiky: přístup založený na uspořádání</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Pure and Applied Logic

  • ISSN

    0168-0072

  • e-ISSN

  • Svazek periodika

    167

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    34

  • Strana od-do

    1298-1331

  • Kód UT WoS článku

    000385604800006

  • EID výsledku v databázi Scopus

    2-s2.0-84989871444