MNiBLoS: A SMT-based Solver for Continuous t-norm Based Logics and Some of their Modal Expansions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00465844" target="_blank" >RIV/67985807:_____/16:00465844 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ins.2016.08.072" target="_blank" >http://dx.doi.org/10.1016/j.ins.2016.08.072</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2016.08.072" target="_blank" >10.1016/j.ins.2016.08.072</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MNiBLoS: A SMT-based Solver for Continuous t-norm Based Logics and Some of their Modal Expansions
Popis výsledku v původním jazyce
In the literature, little attention has been paid to the development of solvers for systems of mathematical fuzzy logic, and in particular, there are few works concerned with infinitely-valued logics. In this paper it is presented mNiBLoS (a modal Nice BL-Logics Solver): a modular SMT-based solver complete with respect to a wide family of continuous t-norm based fuzzy modal logics (both with finite and infinite universes), restricting the modal structures to the finite ones. At the propositional level, the solver works with some of the best known infinitely-valued fuzzy logics (including BL, Lukasiewicz, Gödel and product logics), and with all the continuous t-norm based logics that can be finitely expressed in terms of the previous ones; concerning the modal expansion, mNiBLoS imposes no boundary on the cardinality of the modal structures considered. The solver allows to test 1-satisfiability of equations, tautologicity and logical consequence problems. The logical language supported extends the usual one of fuzzy modal logics with rational constants and the Monteiro-Baaz delta operator. The code of mNiBLoS is of free distribution and can be found in the web page of the author.
Název v anglickém jazyce
MNiBLoS: A SMT-based Solver for Continuous t-norm Based Logics and Some of their Modal Expansions
Popis výsledku anglicky
In the literature, little attention has been paid to the development of solvers for systems of mathematical fuzzy logic, and in particular, there are few works concerned with infinitely-valued logics. In this paper it is presented mNiBLoS (a modal Nice BL-Logics Solver): a modular SMT-based solver complete with respect to a wide family of continuous t-norm based fuzzy modal logics (both with finite and infinite universes), restricting the modal structures to the finite ones. At the propositional level, the solver works with some of the best known infinitely-valued fuzzy logics (including BL, Lukasiewicz, Gödel and product logics), and with all the continuous t-norm based logics that can be finitely expressed in terms of the previous ones; concerning the modal expansion, mNiBLoS imposes no boundary on the cardinality of the modal structures considered. The solver allows to test 1-satisfiability of equations, tautologicity and logical consequence problems. The logical language supported extends the usual one of fuzzy modal logics with rational constants and the Monteiro-Baaz delta operator. The code of mNiBLoS is of free distribution and can be found in the web page of the author.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GF15-34650L" target="_blank" >GF15-34650L: Modelování vágních kvantifikátorů v matematické fuzzy logice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Sciences
ISSN
0020-0255
e-ISSN
—
Svazek periodika
372
Číslo periodika v rámci svazku
1 December
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
709-730
Kód UT WoS článku
000384864300044
EID výsledku v databázi Scopus
2-s2.0-84984653327