Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Filter Factors of Truncated TLS Regularization with Multiple Observations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00474150" target="_blank" >RIV/67985807:_____/17:00474150 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24510/17:00004908 RIV/00216208:11320/17:10366649

  • Výsledek na webu

    <a href="http://dx.doi.org/10.21136/AM.2017.0228-16" target="_blank" >http://dx.doi.org/10.21136/AM.2017.0228-16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21136/AM.2017.0228-16" target="_blank" >10.21136/AM.2017.0228-16</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Filter Factors of Truncated TLS Regularization with Multiple Observations

  • Popis výsledku v původním jazyce

    The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems Ax approx b were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of A applied to b. This paper focuses on the situation when multiple observations b1,..., bd are available, i.e., the T-TLS method is applied to the problem AX approx B, where B = [b1,..., bd] is a matrix. It is proved that the filtering representation of the T-TLS solution can be generalized to this case. The corresponding filter factors are explicitly derived.

  • Název v anglickém jazyce

    Filter Factors of Truncated TLS Regularization with Multiple Observations

  • Popis výsledku anglicky

    The total least squares (TLS) and truncated TLS (T-TLS) methods are widely known linear data fitting approaches, often used also in the context of very ill-conditioned, rank-deficient, or ill-posed problems. Regularization properties of T-TLS applied to linear approximation problems Ax approx b were analyzed by Fierro, Golub, Hansen, and O’Leary (1997) through the so-called filter factors allowing to represent the solution in terms of a filtered pseudoinverse of A applied to b. This paper focuses on the situation when multiple observations b1,..., bd are available, i.e., the T-TLS method is applied to the problem AX approx B, where B = [b1,..., bd] is a matrix. It is proved that the filtering representation of the T-TLS solution can be generalized to this case. The corresponding filter factors are explicitly derived.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-06684S" target="_blank" >GA13-06684S: Iterační metody ve výpočetní matematice: Analýza, předpodmínění a aplikace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Svazek periodika

    62

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    16

  • Strana od-do

    105-120

  • Kód UT WoS článku

    000400889400002

  • EID výsledku v databázi Scopus

    2-s2.0-85015684073