Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bounds on Sparsity of One-Hidden-Layer Perceptron Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00478625" target="_blank" >RIV/67985807:_____/17:00478625 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-1885/100.pdf" target="_blank" >http://ceur-ws.org/Vol-1885/100.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bounds on Sparsity of One-Hidden-Layer Perceptron Networks

  • Popis výsledku v původním jazyce

    Limitations of one-hidden-layer (shallow) perceptron networks to sparsely represent multivariable functions is investigated. A concrete class of functions is described whose computation by shallow perceptron networks requires either large number of units or is unstable due to large output weights. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections with the central paradox of coding theory are discussed.

  • Název v anglickém jazyce

    Bounds on Sparsity of One-Hidden-Layer Perceptron Networks

  • Popis výsledku anglicky

    Limitations of one-hidden-layer (shallow) perceptron networks to sparsely represent multivariable functions is investigated. A concrete class of functions is described whose computation by shallow perceptron networks requires either large number of units or is unstable due to large output weights. The class is constructed using pseudo-noise sequences which have many features of random sequences but can be generated using special polynomials. Connections with the central paradox of coding theory are discussed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-18108S" target="_blank" >GA15-18108S: Modelová složitost neuronových, radiálních a jádrových sítí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings ITAT 2017: Information Technologies - Applications and Theory

  • ISBN

    978-1974274741

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    100-105

  • Název nakladatele

    Technical University & CreateSpace Independent Publishing Platform

  • Místo vydání

    Aachen & Charleston

  • Místo konání akce

    Martinské hole

  • Datum konání akce

    22. 9. 2017

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku