Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00484851" target="_blank" >RIV/67985807:_____/18:00484851 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/18:00105591
Výsledek na webu
<a href="http://dx.doi.org/10.1111/eth.12713" target="_blank" >http://dx.doi.org/10.1111/eth.12713</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/eth.12713" target="_blank" >10.1111/eth.12713</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences
Popis výsledku v původním jazyce
Within behavioural research, non-normally distributed data with a complicated structure are common. For instance, data can represent repeated observations of quantities on the same individual. The regression analysis of such data is complicated both by the interdependency of the observations (response variables) and by their non-normal distribution. Over the last decade, such data have been more and more frequently analysed using generalized mixed-effect models. Some researchers invoke the heavy machinery of mixed-effect modelling to obtain the desired population-level (marginal) inference, which can be achieved by using simpler tools - namely by marginal models. This paper highlights marginal modelling (using generalized estimating equations [GEE]) as an alternative method. In various situations, GEE can be based on fewer assumptions and directly generate estimates (population-level parameters) which are of immediate interest to the behavioural researcher (such as population means). Using four examples from behavioural research, we demonstrate the use, advantages, and limits of the GEE approach as implemented within the functions of the ‘geepack’ package in R.
Název v anglickém jazyce
Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences
Popis výsledku anglicky
Within behavioural research, non-normally distributed data with a complicated structure are common. For instance, data can represent repeated observations of quantities on the same individual. The regression analysis of such data is complicated both by the interdependency of the observations (response variables) and by their non-normal distribution. Over the last decade, such data have been more and more frequently analysed using generalized mixed-effect models. Some researchers invoke the heavy machinery of mixed-effect modelling to obtain the desired population-level (marginal) inference, which can be achieved by using simpler tools - namely by marginal models. This paper highlights marginal modelling (using generalized estimating equations [GEE]) as an alternative method. In various situations, GEE can be based on fewer assumptions and directly generate estimates (population-level parameters) which are of immediate interest to the behavioural researcher (such as population means). Using four examples from behavioural research, we demonstrate the use, advantages, and limits of the GEE approach as implemented within the functions of the ‘geepack’ package in R.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ethology
ISSN
0179-1613
e-ISSN
—
Svazek periodika
124
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
86-93
Kód UT WoS článku
000419978200002
EID výsledku v databázi Scopus
2-s2.0-85040669856