Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gaussian Process Surrogate Models for the CMA Evolution Strategy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00498868" target="_blank" >RIV/67985807:_____/19:00498868 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1162/evco_a_00244" target="_blank" >http://dx.doi.org/10.1162/evco_a_00244</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1162/evco_a_00244" target="_blank" >10.1162/evco_a_00244</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gaussian Process Surrogate Models for the CMA Evolution Strategy

  • Popis výsledku v původním jazyce

    This article deals with Gaussian process surrogate models for the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)—several already existing and two by the authors recently proposed models are presented. The work discusses different variants of surrogate model exploitation and focuses on the benefits of employing the Gaussian process uncertainty prediction, especially during the selection of points for the evaluation with a surrogate model. The experimental part of the paper thoroughly compares and evaluates the five presented Gaussian process surrogate and six other state-of-the-art optimizers on the COCO benchmarks. The algorithm presented in most detail, DTS-CMA-ES, which combines cheap surrogate-model predictions with the objective function evaluations in every iteration, is shown to approach the function optimum at least comparably fast and often faster than the state-of-the-art black-box optimizers for budgets of roughly 25–100 function evaluations per dimension, in 10- and lessdimensional spaces even for 25–250 evaluations per dimension.

  • Název v anglickém jazyce

    Gaussian Process Surrogate Models for the CMA Evolution Strategy

  • Popis výsledku anglicky

    This article deals with Gaussian process surrogate models for the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)—several already existing and two by the authors recently proposed models are presented. The work discusses different variants of surrogate model exploitation and focuses on the benefits of employing the Gaussian process uncertainty prediction, especially during the selection of points for the evaluation with a surrogate model. The experimental part of the paper thoroughly compares and evaluates the five presented Gaussian process surrogate and six other state-of-the-art optimizers on the COCO benchmarks. The algorithm presented in most detail, DTS-CMA-ES, which combines cheap surrogate-model predictions with the objective function evaluations in every iteration, is shown to approach the function optimum at least comparably fast and often faster than the state-of-the-art black-box optimizers for budgets of roughly 25–100 function evaluations per dimension, in 10- and lessdimensional spaces even for 25–250 evaluations per dimension.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Evolutionary Computation

  • ISSN

    1063-6560

  • e-ISSN

    1530-9304

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    33

  • Strana od-do

    665-697

  • Kód UT WoS článku

    000500189000005

  • EID výsledku v databázi Scopus

    2-s2.0-85070618753