Gaussian Process Surrogate Models for the CMA Evolution Strategy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00498868" target="_blank" >RIV/67985807:_____/19:00498868 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1162/evco_a_00244" target="_blank" >http://dx.doi.org/10.1162/evco_a_00244</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/evco_a_00244" target="_blank" >10.1162/evco_a_00244</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gaussian Process Surrogate Models for the CMA Evolution Strategy
Popis výsledku v původním jazyce
This article deals with Gaussian process surrogate models for the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)—several already existing and two by the authors recently proposed models are presented. The work discusses different variants of surrogate model exploitation and focuses on the benefits of employing the Gaussian process uncertainty prediction, especially during the selection of points for the evaluation with a surrogate model. The experimental part of the paper thoroughly compares and evaluates the five presented Gaussian process surrogate and six other state-of-the-art optimizers on the COCO benchmarks. The algorithm presented in most detail, DTS-CMA-ES, which combines cheap surrogate-model predictions with the objective function evaluations in every iteration, is shown to approach the function optimum at least comparably fast and often faster than the state-of-the-art black-box optimizers for budgets of roughly 25–100 function evaluations per dimension, in 10- and lessdimensional spaces even for 25–250 evaluations per dimension.
Název v anglickém jazyce
Gaussian Process Surrogate Models for the CMA Evolution Strategy
Popis výsledku anglicky
This article deals with Gaussian process surrogate models for the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)—several already existing and two by the authors recently proposed models are presented. The work discusses different variants of surrogate model exploitation and focuses on the benefits of employing the Gaussian process uncertainty prediction, especially during the selection of points for the evaluation with a surrogate model. The experimental part of the paper thoroughly compares and evaluates the five presented Gaussian process surrogate and six other state-of-the-art optimizers on the COCO benchmarks. The algorithm presented in most detail, DTS-CMA-ES, which combines cheap surrogate-model predictions with the objective function evaluations in every iteration, is shown to approach the function optimum at least comparably fast and often faster than the state-of-the-art black-box optimizers for budgets of roughly 25–100 function evaluations per dimension, in 10- and lessdimensional spaces even for 25–250 evaluations per dimension.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Evolutionary Computation
ISSN
1063-6560
e-ISSN
1530-9304
Svazek periodika
27
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
665-697
Kód UT WoS článku
000500189000005
EID výsledku v databázi Scopus
2-s2.0-85070618753