Question Answering by Humans and Machines: A Complexity-theoretic View
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00505732" target="_blank" >RIV/67985807:_____/19:00505732 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2018.08.012" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2018.08.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2018.08.012" target="_blank" >10.1016/j.tcs.2018.08.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Question Answering by Humans and Machines: A Complexity-theoretic View
Popis výsledku v původním jazyce
Question-answering systems like Watson beat humans when it comes to processing speed and memory. But what happens if we compensate for this? What are the fundamental differences in power between human and artificial agents in question answering? We explore this issue by defining new computational models for both agents and comparing their computational efficiency in interactive sessions. Concretely, human agents are modeled by means of cognitive automata, augmented with a form of background intelligence which gives the automata the possibility to query a given Turing machine and use the answers from one interaction to the next. On the other hand, artificial question-answering agents are modeled by QA-machines, which are Turing machines that can access a predefined, potentially infinite knowledge base (‘advice’) and have a bounded amount of learning space at their disposal. We show that cognitive automata and QA-machines have exactly the same potential in realizing question-answering sessions, provided the resource bounds in one model are sufficient to match the abilities of the other. In particular, polynomially bounded cognitive automata with background intelligence (i.e. human agents) prove to be equivalent to polynomially bounded QA-machines with logarithmic learning space. It generalizes Pippenger's theorem on the computational power of switching circuits (without background intelligence) to a foundational result for question answering in cognitive science. The framework reveals why QA-machines have a fundamental advantage.
Název v anglickém jazyce
Question Answering by Humans and Machines: A Complexity-theoretic View
Popis výsledku anglicky
Question-answering systems like Watson beat humans when it comes to processing speed and memory. But what happens if we compensate for this? What are the fundamental differences in power between human and artificial agents in question answering? We explore this issue by defining new computational models for both agents and comparing their computational efficiency in interactive sessions. Concretely, human agents are modeled by means of cognitive automata, augmented with a form of background intelligence which gives the automata the possibility to query a given Turing machine and use the answers from one interaction to the next. On the other hand, artificial question-answering agents are modeled by QA-machines, which are Turing machines that can access a predefined, potentially infinite knowledge base (‘advice’) and have a bounded amount of learning space at their disposal. We show that cognitive automata and QA-machines have exactly the same potential in realizing question-answering sessions, provided the resource bounds in one model are sufficient to match the abilities of the other. In particular, polynomially bounded cognitive automata with background intelligence (i.e. human agents) prove to be equivalent to polynomially bounded QA-machines with logarithmic learning space. It generalizes Pippenger's theorem on the computational power of switching circuits (without background intelligence) to a foundational result for question answering in cognitive science. The framework reveals why QA-machines have a fundamental advantage.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
777
Číslo periodika v rámci svazku
19 July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
464-473
Kód UT WoS článku
000473372800030
EID výsledku v databázi Scopus
2-s2.0-85054352634