Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Question Answering by Humans and Machines: A Complexity-theoretic View

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00505732" target="_blank" >RIV/67985807:_____/19:00505732 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.tcs.2018.08.012" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2018.08.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2018.08.012" target="_blank" >10.1016/j.tcs.2018.08.012</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Question Answering by Humans and Machines: A Complexity-theoretic View

  • Popis výsledku v původním jazyce

    Question-answering systems like Watson beat humans when it comes to processing speed and memory. But what happens if we compensate for this? What are the fundamental differences in power between human and artificial agents in question answering? We explore this issue by defining new computational models for both agents and comparing their computational efficiency in interactive sessions. Concretely, human agents are modeled by means of cognitive automata, augmented with a form of background intelligence which gives the automata the possibility to query a given Turing machine and use the answers from one interaction to the next. On the other hand, artificial question-answering agents are modeled by QA-machines, which are Turing machines that can access a predefined, potentially infinite knowledge base (‘advice’) and have a bounded amount of learning space at their disposal. We show that cognitive automata and QA-machines have exactly the same potential in realizing question-answering sessions, provided the resource bounds in one model are sufficient to match the abilities of the other. In particular, polynomially bounded cognitive automata with background intelligence (i.e. human agents) prove to be equivalent to polynomially bounded QA-machines with logarithmic learning space. It generalizes Pippenger's theorem on the computational power of switching circuits (without background intelligence) to a foundational result for question answering in cognitive science. The framework reveals why QA-machines have a fundamental advantage.

  • Název v anglickém jazyce

    Question Answering by Humans and Machines: A Complexity-theoretic View

  • Popis výsledku anglicky

    Question-answering systems like Watson beat humans when it comes to processing speed and memory. But what happens if we compensate for this? What are the fundamental differences in power between human and artificial agents in question answering? We explore this issue by defining new computational models for both agents and comparing their computational efficiency in interactive sessions. Concretely, human agents are modeled by means of cognitive automata, augmented with a form of background intelligence which gives the automata the possibility to query a given Turing machine and use the answers from one interaction to the next. On the other hand, artificial question-answering agents are modeled by QA-machines, which are Turing machines that can access a predefined, potentially infinite knowledge base (‘advice’) and have a bounded amount of learning space at their disposal. We show that cognitive automata and QA-machines have exactly the same potential in realizing question-answering sessions, provided the resource bounds in one model are sufficient to match the abilities of the other. In particular, polynomially bounded cognitive automata with background intelligence (i.e. human agents) prove to be equivalent to polynomially bounded QA-machines with logarithmic learning space. It generalizes Pippenger's theorem on the computational power of switching circuits (without background intelligence) to a foundational result for question answering in cognitive science. The framework reveals why QA-machines have a fundamental advantage.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Svazek periodika

    777

  • Číslo periodika v rámci svazku

    19 July

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    464-473

  • Kód UT WoS článku

    000473372800030

  • EID výsledku v databázi Scopus

    2-s2.0-85054352634