Coupling in complex systems as information transfer across time scales
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00511187" target="_blank" >RIV/67985807:_____/19:00511187 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1098/rsta.2019.0094" target="_blank" >http://dx.doi.org/10.1098/rsta.2019.0094</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1098/rsta.2019.0094" target="_blank" >10.1098/rsta.2019.0094</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Coupling in complex systems as information transfer across time scales
Popis výsledku v původním jazyce
Complex systems such as the human brain or the Earth's climate consist of many subsystems interacting in intricate, nonlinear ways. Moreover, variability of such systems extends over broad ranges of spatial and temporal scales and dynamical phenomena on different scales also influence each other. In order to explain how to detect cross-scale causal interactions, we review information-theoretic formulation of the Granger causality in combination with computational statistics (surrogate data method) and demonstrate how this method can be used to infer driver-response relations from amplitudes and phases of coupled nonlinear dynamical systems. Considering complex systems evolving on multiple time scales, the reviewed methodology starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited bandwidth, described using their instantaneous phases and amplitudes. Then statistical associations, in particular, causality relations between phases or between phases and amplitudes on different time scales are tested using the conditional mutual information. As an application, we present the analysis of cross-scale interactions and information transfer in the dynamics of the El Niño Southern Oscillation.
Název v anglickém jazyce
Coupling in complex systems as information transfer across time scales
Popis výsledku anglicky
Complex systems such as the human brain or the Earth's climate consist of many subsystems interacting in intricate, nonlinear ways. Moreover, variability of such systems extends over broad ranges of spatial and temporal scales and dynamical phenomena on different scales also influence each other. In order to explain how to detect cross-scale causal interactions, we review information-theoretic formulation of the Granger causality in combination with computational statistics (surrogate data method) and demonstrate how this method can be used to infer driver-response relations from amplitudes and phases of coupled nonlinear dynamical systems. Considering complex systems evolving on multiple time scales, the reviewed methodology starts with a wavelet decomposition of a multi-scale signal into quasi-oscillatory modes of a limited bandwidth, described using their instantaneous phases and amplitudes. Then statistical associations, in particular, causality relations between phases or between phases and amplitudes on different time scales are tested using the conditional mutual information. As an application, we present the analysis of cross-scale interactions and information transfer in the dynamics of the El Niño Southern Oscillation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-16066S" target="_blank" >GA19-16066S: Nelineární interakce a přenos informace v komplexních systémech s extrémními událostmi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences
ISSN
1364-503X
e-ISSN
—
Svazek periodika
377
Číslo periodika v rámci svazku
2160
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
20190094
Kód UT WoS článku
000511612600011
EID výsledku v databázi Scopus
2-s2.0-85074169837