Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Residual and nonparametric bootstrap for estimating variability of robust regression estimators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00517237" target="_blank" >RIV/67985807:_____/19:00517237 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://github.com/Veragin/Bootstrap" target="_blank" >https://github.com/Veragin/Bootstrap</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Residual and nonparametric bootstrap for estimating variability of robust regression estimators

  • Popis výsledku v původním jazyce

    The software in Matlab allows to compute two types of bootstrap for the least trimmed squares and least weighted squares estimators of parameters in linear regression. Particularly, residual bootstrap and nonparametric bootstrap are computed, which yields estimates of the covariance matrix of the two robust estimators. The method allows to compare the stability of the estimates and reveals to bring arguments in favor of the least weighted squares estimator over a variety of datasets.

  • Název v anglickém jazyce

    Residual and nonparametric bootstrap for estimating variability of robust regression estimators

  • Popis výsledku anglicky

    The software in Matlab allows to compute two types of bootstrap for the least trimmed squares and least weighted squares estimators of parameters in linear regression. Particularly, residual bootstrap and nonparametric bootstrap are computed, which yields estimates of the covariance matrix of the two robust estimators. The method allows to compare the stability of the estimates and reveals to bring arguments in favor of the least weighted squares estimator over a variety of datasets.

Klasifikace

  • Druh

    R - Software

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytické základy neurovýpočtů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Interní identifikační kód produktu

    Bootstrap Residual 1.0

  • Technické parametry

    Kód v Matlabu, spustitelný samostatně podle instrukcí v dokumentaci. Spuštění vyžaduje kód pro výpočet LTS a LWS odhadu. Dostupné pod licencí MIT.

  • Ekonomické parametry

    Software umožňuje uživateli odhadnout varianční matici pro LTS a LWS odhady pomocí reziduálního bootstrapu. Software usnadňuje práci s těmito odhady, protože jiná metoda pro odhad jejich variability není dosud nikde implementovaná.

  • IČO vlastníka výsledku

    67985807

  • Název vlastníka

    Ústav informatiky AV ČR, v. v. i.