Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Partial sum of eigenvalues of random graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00524781" target="_blank" >RIV/67985807:_____/20:00524781 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hdl.handle.net/11104/0309071" target="_blank" >http://hdl.handle.net/11104/0309071</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21136/AM.2020.0352-19" target="_blank" >10.21136/AM.2020.0352-19</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Partial sum of eigenvalues of random graphs

  • Popis výsledku v původním jazyce

    Let G be a graph on n vertices and let lambda(1) >= lambda(2) >= ... >= lambda(n) be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues s(k)= Sigma(k)(i=1)lambda(i) for 1 <= k <= n, and show that a typical graph has S-k <= (e(G) +k(2))/(0.99n)(1/2), where e(G) is the number of edges of G. We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.

  • Název v anglickém jazyce

    Partial sum of eigenvalues of random graphs

  • Popis výsledku anglicky

    Let G be a graph on n vertices and let lambda(1) >= lambda(2) >= ... >= lambda(n) be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues s(k)= Sigma(k)(i=1)lambda(i) for 1 <= k <= n, and show that a typical graph has S-k <= (e(G) +k(2))/(0.99n)(1/2), where e(G) is the number of edges of G. We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-08740S" target="_blank" >GA19-08740S: Vnořování, pakování a limity v Grafech</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applications of Mathematics

  • ISSN

    0862-7940

  • e-ISSN

  • Svazek periodika

    65

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    10

  • Strana od-do

    609-618

  • Kód UT WoS článku

    000576794600005

  • EID výsledku v databázi Scopus

    2-s2.0-85092150018