Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Note on Adaptivity in Factorized Approximate Inverse Preconditioning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00525243" target="_blank" >RIV/67985807:_____/20:00525243 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/46747885:24220/20:00007782

  • Výsledek na webu

    <a href="https://www.anstuocmath.ro/volume-xxviii-2020-fascicola-2.html" target="_blank" >https://www.anstuocmath.ro/volume-xxviii-2020-fascicola-2.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/auom-2020-0024" target="_blank" >10.2478/auom-2020-0024</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Note on Adaptivity in Factorized Approximate Inverse Preconditioning

  • Popis výsledku v původním jazyce

    The problem of solving large-scale systems of linear algebraic equations arises in a wide range of applications. In many cases the preconditioned iterative method is a method of choice. This paper deals with the approximate inverse preconditioning AINV/SAINV based on the incomplete generalized Gram-Schmidt process. This type of the approximate inverse preconditioning has been repeatedly used for matrix diagonalization in computation of electronic structures but approximating inverses is of an interest in parallel computations in general. Our approach uses adaptive dropping of the matrix entries with the control based on the computed intermediate quantities. Strategy has been introduced as a way to solve difficult application problems and it is motivated by recent theoretical results on the loss of orthogonality in the generalized Gram-Schmidt process. Nevertheless, there are more aspects of the approach that need to be better understood. The diagonal pivoting based on a rough estimation of condition numbers of leading principal submatrices can sometimes provide inefficient preconditioners. This short study proposes another type of pivoting, namely the pivoting that exploits incremental condition estimation based on monitoring both direct and inverse factors of the approximate factorization. Such pivoting remains rather cheap and it can provide in many cases more reliable preconditioner. Numerical examples from real-world problems, small enough to enable a full analysis, are used to illustrate the potential gains of the new approach.

  • Název v anglickém jazyce

    A Note on Adaptivity in Factorized Approximate Inverse Preconditioning

  • Popis výsledku anglicky

    The problem of solving large-scale systems of linear algebraic equations arises in a wide range of applications. In many cases the preconditioned iterative method is a method of choice. This paper deals with the approximate inverse preconditioning AINV/SAINV based on the incomplete generalized Gram-Schmidt process. This type of the approximate inverse preconditioning has been repeatedly used for matrix diagonalization in computation of electronic structures but approximating inverses is of an interest in parallel computations in general. Our approach uses adaptive dropping of the matrix entries with the control based on the computed intermediate quantities. Strategy has been introduced as a way to solve difficult application problems and it is motivated by recent theoretical results on the loss of orthogonality in the generalized Gram-Schmidt process. Nevertheless, there are more aspects of the approach that need to be better understood. The diagonal pivoting based on a rough estimation of condition numbers of leading principal submatrices can sometimes provide inefficient preconditioners. This short study proposes another type of pivoting, namely the pivoting that exploits incremental condition estimation based on monitoring both direct and inverse factors of the approximate factorization. Such pivoting remains rather cheap and it can provide in many cases more reliable preconditioner. Numerical examples from real-world problems, small enough to enable a full analysis, are used to illustrate the potential gains of the new approach.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-12925S" target="_blank" >GA17-12925S: Pevnost materiálů a strojních součástí na bázi železa: Víceškálový přístup</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica

  • ISSN

    1224-1784

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    RO - Rumunsko

  • Počet stran výsledku

    11

  • Strana od-do

    149-159

  • Kód UT WoS článku

    000574556300009

  • EID výsledku v databázi Scopus

    2-s2.0-85093503628