Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Minimum Redundancy Maximum Relevance variable selection 1.0

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00532169" target="_blank" >RIV/67985807:_____/20:00532169 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://github.com/jankalinaUI/Minimum_Regularized_Redundancy_Maximum_Robust_Relevance_Variable_Selection" target="_blank" >https://github.com/jankalinaUI/Minimum_Regularized_Redundancy_Maximum_Robust_Relevance_Variable_Selection</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Minimum Redundancy Maximum Relevance variable selection 1.0

  • Popis výsledku v původním jazyce

    The code implemented in R software performs supervised variable selection of a given (possibly high-dimensional) dataset by the MRMR method, i.e. Minimum Redundancy-Maximum Relevance. The computations, which were tested over three real datasets, include automatic choices of all parameters and compare various measures of relevance and redundancy as well as various classifiers. The software is available under MIT license.

  • Název v anglickém jazyce

    Minimum Redundancy Maximum Relevance variable selection 1.0

  • Popis výsledku anglicky

    The code implemented in R software performs supervised variable selection of a given (possibly high-dimensional) dataset by the MRMR method, i.e. Minimum Redundancy-Maximum Relevance. The computations, which were tested over three real datasets, include automatic choices of all parameters and compare various measures of relevance and redundancy as well as various classifiers. The software is available under MIT license.

Klasifikace

  • Druh

    R - Software

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytické základy neurovýpočtů</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Interní identifikační kód produktu

    MRMR 1.0

  • Technické parametry

    Kód v softwaru R je samostatně spustitelný, vyžaduje instalaci několika dostupných knihoven (MASS, glmnet, e1071, pamr, rda, rrlda). Spuštění je přímočaré s využitím kódu ze souboru DimReduction.R a s využitím dokumentace v něm uvedené, soubor Classifiers.R obsahuje jen pomocné postupy. Dostupné pod licencí MIT.

  • Ekonomické parametry

    Software provádí robustní regularizovanou verzi známé metody MRMR pro redukci dimenze. Zde jde o dosud první dostupnou implementaci MRMR metody, která je vhodná pro vysoce dimenzionální data kontaminovaná odlehlými hodnotami, zároveň optimálně odhaduje veškeré parametry, a proto výrazně usnadňuje práci uživatelům.

  • IČO vlastníka výsledku

    67985807

  • Název vlastníka

    Ústav informatiky AV ČR, v. v. i., České vysoké učení technické v Praze