Global Phase-Amplitude Description of Oscillatory Dynamics via the Parameterization Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00532247" target="_blank" >RIV/67985807:_____/20:00532247 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/5.0010149" target="_blank" >http://dx.doi.org/10.1063/5.0010149</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0010149" target="_blank" >10.1063/5.0010149</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Global Phase-Amplitude Description of Oscillatory Dynamics via the Parameterization Method
Popis výsledku v původním jazyce
In this paper, we use the parameterization method to provide a complete description of the dynamics of an n-dimensional oscillator beyond the classical phase reduction. The parameterization method allows us, via efficient algorithms, to obtain a parameterization of the attracting invariant manifold of the limit cycle in terms of the phase-amplitude variables. The method has several advantages. It provides analytically a Fourier–Taylor expansion of the parameterization up to any order, as well as a simplification of the dynamics that allows for a numerical globalization of the manifolds. Thus, one can obtain the local and global isochrons and isostables, including the slow attracting manifold, up to high accuracy, which offer a geometrical portrait of the oscillatory dynamics. Furthermore, it provides straightforwardly the infinitesimal phase and amplitude response functions, that is, the extended infinitesimal phase and amplitude response curves, which monitor the phase and amplitude shifts beyond the asymptotic state. Thus, the methodology presented yields an accurate description of the phase dynamics for perturbations not restricted to the limit cycle but to its attracting invariant manifold. Finally, we explore some strategies to reduce the dimension of the dynamics, including the reduction of the dynamics to the slow stable submanifold. We illustrate our methods by applying them to different three-dimensional single neuron and neural population models in neuroscience. We extend the applications of the parameterization method to compute the full set of phase-amplitude coordinates for high-dimensional oscillators. We use the Floquet normal form and automatic differentiation techniques to drastically reduce the computational cost of the required calculations. Our methods provide an analytical expression for the local isochrons, isostables, and infinitesimal phase and amplitude response functions in a neighborhood of the limit cycle, while allowing for the globalization of these objects and functions to the full basin of attraction. We illustrate our methodology by applying it to relevant single neuron and neural population models in neuroscience. Moreover, we perform a perturbation study of a single neuron model and study the scope of validity of different dynamical reductions, namely, the slow-manifold reduction and the phase reduction. Our results provide an efficient methodology that allows for a geometrical understanding of the dynamics of high-dimensional oscillators.
Název v anglickém jazyce
Global Phase-Amplitude Description of Oscillatory Dynamics via the Parameterization Method
Popis výsledku anglicky
In this paper, we use the parameterization method to provide a complete description of the dynamics of an n-dimensional oscillator beyond the classical phase reduction. The parameterization method allows us, via efficient algorithms, to obtain a parameterization of the attracting invariant manifold of the limit cycle in terms of the phase-amplitude variables. The method has several advantages. It provides analytically a Fourier–Taylor expansion of the parameterization up to any order, as well as a simplification of the dynamics that allows for a numerical globalization of the manifolds. Thus, one can obtain the local and global isochrons and isostables, including the slow attracting manifold, up to high accuracy, which offer a geometrical portrait of the oscillatory dynamics. Furthermore, it provides straightforwardly the infinitesimal phase and amplitude response functions, that is, the extended infinitesimal phase and amplitude response curves, which monitor the phase and amplitude shifts beyond the asymptotic state. Thus, the methodology presented yields an accurate description of the phase dynamics for perturbations not restricted to the limit cycle but to its attracting invariant manifold. Finally, we explore some strategies to reduce the dimension of the dynamics, including the reduction of the dynamics to the slow stable submanifold. We illustrate our methods by applying them to different three-dimensional single neuron and neural population models in neuroscience. We extend the applications of the parameterization method to compute the full set of phase-amplitude coordinates for high-dimensional oscillators. We use the Floquet normal form and automatic differentiation techniques to drastically reduce the computational cost of the required calculations. Our methods provide an analytical expression for the local isochrons, isostables, and infinitesimal phase and amplitude response functions in a neighborhood of the limit cycle, while allowing for the globalization of these objects and functions to the full basin of attraction. We illustrate our methodology by applying it to relevant single neuron and neural population models in neuroscience. Moreover, we perform a perturbation study of a single neuron model and study the scope of validity of different dynamical reductions, namely, the slow-manifold reduction and the phase reduction. Our results provide an efficient methodology that allows for a geometrical understanding of the dynamics of high-dimensional oscillators.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos
ISSN
1054-1500
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
083117
Kód UT WoS článku
000560034000001
EID výsledku v databázi Scopus
2-s2.0-85090112462