Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Epimorphism Surjectivity in Varieties of Heyting Algebras

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00532809" target="_blank" >RIV/67985807:_____/20:00532809 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.apal.2020.102824" target="_blank" >http://dx.doi.org/10.1016/j.apal.2020.102824</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apal.2020.102824" target="_blank" >10.1016/j.apal.2020.102824</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Epimorphism Surjectivity in Varieties of Heyting Algebras

  • Popis výsledku v původním jazyce

    It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K. It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that for every integer n⩾2, the variety of all Heyting algebras of width at most n has a non-surjective epimorphism. Within the so-called Kuznetsov-Gerčiu variety (i.e., the variety generated by finite linear sums of one-generated Heyting algebras), we describe exactly the subvarieties that have surjective epimorphisms. This yields new positive examples, and an alternative proof of epimorphism surjectivity for all varieties of Gödel algebras. The results settle natural questions about Beth-style definability for a range of intermediate logics.

  • Název v anglickém jazyce

    Epimorphism Surjectivity in Varieties of Heyting Algebras

  • Popis výsledku anglicky

    It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K. It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that for every integer n⩾2, the variety of all Heyting algebras of width at most n has a non-surjective epimorphism. Within the so-called Kuznetsov-Gerčiu variety (i.e., the variety generated by finite linear sums of one-generated Heyting algebras), we describe exactly the subvarieties that have surjective epimorphisms. This yields new positive examples, and an alternative proof of epimorphism surjectivity for all varieties of Gödel algebras. The results settle natural questions about Beth-style definability for a range of intermediate logics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_050%2F0008361" target="_blank" >EF17_050/0008361: Rozvoj lidských zdrojů pro výzkum v teoretické informatice</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Pure and Applied Logic

  • ISSN

    0168-0072

  • e-ISSN

  • Svazek periodika

    171

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    31

  • Strana od-do

    102824

  • Kód UT WoS článku

    000553439500003

  • EID výsledku v databázi Scopus

    2-s2.0-85084860827