Epimorphism Surjectivity in Varieties of Heyting Algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00532809" target="_blank" >RIV/67985807:_____/20:00532809 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.apal.2020.102824" target="_blank" >http://dx.doi.org/10.1016/j.apal.2020.102824</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2020.102824" target="_blank" >10.1016/j.apal.2020.102824</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Epimorphism Surjectivity in Varieties of Heyting Algebras
Popis výsledku v původním jazyce
It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K. It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that for every integer n⩾2, the variety of all Heyting algebras of width at most n has a non-surjective epimorphism. Within the so-called Kuznetsov-Gerčiu variety (i.e., the variety generated by finite linear sums of one-generated Heyting algebras), we describe exactly the subvarieties that have surjective epimorphisms. This yields new positive examples, and an alternative proof of epimorphism surjectivity for all varieties of Gödel algebras. The results settle natural questions about Beth-style definability for a range of intermediate logics.
Název v anglickém jazyce
Epimorphism Surjectivity in Varieties of Heyting Algebras
Popis výsledku anglicky
It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K. It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that for every integer n⩾2, the variety of all Heyting algebras of width at most n has a non-surjective epimorphism. Within the so-called Kuznetsov-Gerčiu variety (i.e., the variety generated by finite linear sums of one-generated Heyting algebras), we describe exactly the subvarieties that have surjective epimorphisms. This yields new positive examples, and an alternative proof of epimorphism surjectivity for all varieties of Gödel algebras. The results settle natural questions about Beth-style definability for a range of intermediate logics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_050%2F0008361" target="_blank" >EF17_050/0008361: Rozvoj lidských zdrojů pro výzkum v teoretické informatice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
—
Svazek periodika
171
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
31
Strana od-do
102824
Kód UT WoS článku
000553439500003
EID výsledku v databázi Scopus
2-s2.0-85084860827