Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiobjective Evolution for Convolutional Neural Network Architecture Search

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00534830" target="_blank" >RIV/67985807:_____/20:00534830 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-030-61401-0_25" target="_blank" >http://dx.doi.org/10.1007/978-3-030-61401-0_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-61401-0_25" target="_blank" >10.1007/978-3-030-61401-0_25</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiobjective Evolution for Convolutional Neural Network Architecture Search

  • Popis výsledku v původním jazyce

    The choice of an architecture is crucial for the performance of the neural network, and thus automatic methods for architecture search have been proposed to provide a data-dependent solution to this problem. In this paper, we deal with an automatic neural architecture search for convolutional neural networks. We propose a novel approach for architecture selection based on multi-objective evolutionary optimisation. Our algorithm optimises not only the performance of the network, but it controls also the size of the network, in terms of the number of network parameters. The proposed algorithm is evaluated on experiments, including MNIST and fashionMNIST classification problems. Our approach outperforms both the considered baseline architectures and the standard genetic algorithm.

  • Název v anglickém jazyce

    Multiobjective Evolution for Convolutional Neural Network Architecture Search

  • Popis výsledku anglicky

    The choice of an architecture is crucial for the performance of the neural network, and thus automatic methods for architecture search have been proposed to provide a data-dependent solution to this problem. In this paper, we deal with an automatic neural architecture search for convolutional neural networks. We propose a novel approach for architecture selection based on multi-objective evolutionary optimisation. Our algorithm optimises not only the performance of the network, but it controls also the size of the network, in terms of the number of network parameters. The proposed algorithm is evaluated on experiments, including MNIST and fashionMNIST classification problems. Our approach outperforms both the considered baseline architectures and the standard genetic algorithm.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-23827S" target="_blank" >GA18-23827S: Schopnosti a omezení mělkých a hlubokých sítí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Intelligence and Soft Computing. ICAISC 2020 Proceedings, Part I

  • ISBN

    978-3-030-61400-3

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    261-270

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Zakopane

  • Datum konání akce

    12. 10. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku