Robustness of Supervised Learning Based on Combined Centroids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00547523" target="_blank" >RIV/67985807:_____/21:00547523 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-87897-9_16" target="_blank" >http://dx.doi.org/10.1007/978-3-030-87897-9_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-87897-9_16" target="_blank" >10.1007/978-3-030-87897-9_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robustness of Supervised Learning Based on Combined Centroids
Popis výsledku v původním jazyce
Recently, we proposed a novel sparse centroid-based supervised learning method, allowing to optimize a single centroid and its corresponding weights. The method is especially useful for localizing objects in images. Here, we extend the method to the task of joint localization of several objects in a 2D-image by means of combining several centroids. The novel approach, i.e. joint optimization of several centroids and a subsequent optimization of their weights, is illustrated on the task of localizing the mouth and both eyes in facial images. Because we are particularly interested in studying the robustness of the method to various modifications of the images, we evaluate the performance of the methods also over images artificially modified by additional noise, occlusion, changed illumination, or rotation. The novel centroid-based method is successful in the localization task, and the optimization turns out to ensure robustness with respect to the presence of noise or occlusion in the images. Moreover, combining the optimized centroids yields more robust results than a method using simple centroids with a highly robust correlation coefficient (with a high breakdown point).
Název v anglickém jazyce
Robustness of Supervised Learning Based on Combined Centroids
Popis výsledku anglicky
Recently, we proposed a novel sparse centroid-based supervised learning method, allowing to optimize a single centroid and its corresponding weights. The method is especially useful for localizing objects in images. Here, we extend the method to the task of joint localization of several objects in a 2D-image by means of combining several centroids. The novel approach, i.e. joint optimization of several centroids and a subsequent optimization of their weights, is illustrated on the task of localizing the mouth and both eyes in facial images. Because we are particularly interested in studying the robustness of the method to various modifications of the images, we evaluate the performance of the methods also over images artificially modified by additional noise, occlusion, changed illumination, or rotation. The novel centroid-based method is successful in the localization task, and the optimization turns out to ensure robustness with respect to the presence of noise or occlusion in the images. Moreover, combining the optimized centroids yields more robust results than a method using simple centroids with a highly robust correlation coefficient (with a high breakdown point).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Intelligence and Soft Computing. ICAISC 2021 Proceedings, Part II
ISBN
978-3-030-87896-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
171-182
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Zakopane / Virtual
Datum konání akce
20. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—