Interaction between Model and its Evolution Control in Surrogate-assisted CMA Evolution Strategy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00557942" target="_blank" >RIV/67985807:_____/21:00557942 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/21:00354467 RIV/68407700:21340/21:00354467 RIV/00216208:11320/21:10450955
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3449639.3459358" target="_blank" >http://dx.doi.org/10.1145/3449639.3459358</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3449639.3459358" target="_blank" >10.1145/3449639.3459358</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interaction between Model and its Evolution Control in Surrogate-assisted CMA Evolution Strategy
Popis výsledku v původním jazyce
Surrogate regression models have been shown as a valuable technique in evolutionary optimization to save evaluations of expensive black-box objective functions. Each surrogate modelling method has two complementary components: the employed model and the control of when to evaluate the model and when the true objective function, aka evolution control. They are often tightly interconnected, which causes difficulties in understanding the impact of each component on the algorithm performance. To contribute to such understanding, we analyse what constitutes the evolution control of three surrogate-assisted versions of the state-of-the-art algorithm for continuous black-box optimization --- the Covariance Matrix Adaptation Evolution Strategy. We implement and empirically compare all possible combinations of the regression models employed in those methods with the three evolution controls encountered in them. An experimental investigation of all those combinations allowed us to asses the influence of the models and their evolution control separately. The experiments are performed on the noiseless and noisy benchmarks of the Comparing-Continuous-Optimisers platform and a real-world simulation benchmark, all in the expensive scenario, where only a small budget of evaluations is available.
Název v anglickém jazyce
Interaction between Model and its Evolution Control in Surrogate-assisted CMA Evolution Strategy
Popis výsledku anglicky
Surrogate regression models have been shown as a valuable technique in evolutionary optimization to save evaluations of expensive black-box objective functions. Each surrogate modelling method has two complementary components: the employed model and the control of when to evaluate the model and when the true objective function, aka evolution control. They are often tightly interconnected, which causes difficulties in understanding the impact of each component on the algorithm performance. To contribute to such understanding, we analyse what constitutes the evolution control of three surrogate-assisted versions of the state-of-the-art algorithm for continuous black-box optimization --- the Covariance Matrix Adaptation Evolution Strategy. We implement and empirically compare all possible combinations of the regression models employed in those methods with the three evolution controls encountered in them. An experimental investigation of all those combinations allowed us to asses the influence of the models and their evolution control separately. The experiments are performed on the noiseless and noisy benchmarks of the Comparing-Continuous-Optimisers platform and a real-world simulation benchmark, all in the expensive scenario, where only a small budget of evaluations is available.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings Of The 2021 Genetic And Evolutionary Computation Conference (Gecco'21)
ISBN
978-1-4503-8350-9
ISSN
—
e-ISSN
—
Počet stran výsledku
9
Strana od-do
528-536
Název nakladatele
Association for Computing Machinery
Místo vydání
New York
Místo konání akce
Lille / Online
Datum konání akce
10. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000773791800063