Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Inter-Rater Reliability In Complex Situations: Model Selection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00570043" target="_blank" >RIV/67985807:_____/21:00570043 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Inter-Rater Reliability In Complex Situations: Model Selection

  • Popis výsledku v původním jazyce

    ZÁKLADNÍ ÚDAJE: Inter-Rater Reliability In Complex Situations: Model Selection. [IMPS 2021: The Annual Meeting of the Psychometric Society. Virtual, 20.07.2021-23.07.2021]. ABSTRAKT: Inter-rater reliability (IRR) is a prerequisite of high-quality ratings and assessments. However, the estimates of IRR may be affected by contextual factors such as rater’s or ratee’s age, gender, major, or internal vs. external status (Martinková, Goldhaber & Erosheva, 2018). In a previous simulation study, we explored how different methods can estimate heterogeneity in IRR if the data-generating model is known (Bartoš, Martinková & Brabec, 2019). We extend the previous work by considering cases when the true data-generating model is unknown. First, we evaluate several frequentist (forward, backward, AIC, and BIC) and Bayesian (Bayes factors, LOO, and WAIC) model selection techniques in their ability to choose the true model. Second, we compare estimates of variance components and IRR for models resulting from different model selection techniques in terms of bias and RMSE. Finally, we consider model-averaged estimates which incorporate uncertainty in the model selection process into the final estimate. Our results suggest that despite the differences in the performance of model selection techniques, the model-averaged estimates perform better than the estimates based on the selected models, regardless of the model selection criteria. We conclude with discussion of further computational aspects of IRR estimation (Erosheva, Martinkova, & Lee, 2021) and of generalizations to more complex designs.nnn

  • Název v anglickém jazyce

    Inter-Rater Reliability In Complex Situations: Model Selection

  • Popis výsledku anglicky

    ZÁKLADNÍ ÚDAJE: Inter-Rater Reliability In Complex Situations: Model Selection. [IMPS 2021: The Annual Meeting of the Psychometric Society. Virtual, 20.07.2021-23.07.2021]. ABSTRAKT: Inter-rater reliability (IRR) is a prerequisite of high-quality ratings and assessments. However, the estimates of IRR may be affected by contextual factors such as rater’s or ratee’s age, gender, major, or internal vs. external status (Martinková, Goldhaber & Erosheva, 2018). In a previous simulation study, we explored how different methods can estimate heterogeneity in IRR if the data-generating model is known (Bartoš, Martinková & Brabec, 2019). We extend the previous work by considering cases when the true data-generating model is unknown. First, we evaluate several frequentist (forward, backward, AIC, and BIC) and Bayesian (Bayes factors, LOO, and WAIC) model selection techniques in their ability to choose the true model. Second, we compare estimates of variance components and IRR for models resulting from different model selection techniques in terms of bias and RMSE. Finally, we consider model-averaged estimates which incorporate uncertainty in the model selection process into the final estimate. Our results suggest that despite the differences in the performance of model selection techniques, the model-averaged estimates perform better than the estimates based on the selected models, regardless of the model selection criteria. We conclude with discussion of further computational aspects of IRR estimation (Erosheva, Martinkova, & Lee, 2021) and of generalizations to more complex designs.nnn

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-03658S" target="_blank" >GA21-03658S: Teoretické základy výpočetní psychometrie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů