Using Past Experience for Configuration of Gaussian Processes in Black-Box Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00603035" target="_blank" >RIV/67985807:_____/21:00603035 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-92121-7_15" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-92121-7_15</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-92121-7_15" target="_blank" >10.1007/978-3-030-92121-7_15</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Past Experience for Configuration of Gaussian Processes in Black-Box Optimization
Popis výsledku v původním jazyce
This paper deals with the configuration of Gaussian processes serving as surrogate models in black-box optimization. It examines several different covariance functions of Gaussian processes (GPs) and a combination of GPs and artificial neural networks (ANNs). Different configurations are compared in the context of a surrogate-assisted version of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), a state-of-the-art evolutionary black-box optimizer. The configuration employs a new methodology, which consists of using data from past runs of the optimizer. In that way, it is possible to avoid demanding computations of the optimizer only to configure the surrogate model as well as to achieve a much more robust configuration relying on 4600 optimization runs in 5 different dimensions. The experimental part reveals that the lowest rank difference error, an error measure corresponding to the CMA-ES invariance with respect to monotonous transformations, is most often achieved using rational quadratic, squared exponential and Matérn 5/2 kernels. It also reveals that these three covariance functions are always equivalent, in the sense that the differences between their errors are never statistically significant. In some cases, they are also equivalent to other configurations, including the combination ANN-GP.
Název v anglickém jazyce
Using Past Experience for Configuration of Gaussian Processes in Black-Box Optimization
Popis výsledku anglicky
This paper deals with the configuration of Gaussian processes serving as surrogate models in black-box optimization. It examines several different covariance functions of Gaussian processes (GPs) and a combination of GPs and artificial neural networks (ANNs). Different configurations are compared in the context of a surrogate-assisted version of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), a state-of-the-art evolutionary black-box optimizer. The configuration employs a new methodology, which consists of using data from past runs of the optimizer. In that way, it is possible to avoid demanding computations of the optimizer only to configure the surrogate model as well as to achieve a much more robust configuration relying on 4600 optimization runs in 5 different dimensions. The experimental part reveals that the lowest rank difference error, an error measure corresponding to the CMA-ES invariance with respect to monotonous transformations, is most often achieved using rational quadratic, squared exponential and Matérn 5/2 kernels. It also reveals that these three covariance functions are always equivalent, in the sense that the differences between their errors are never statistically significant. In some cases, they are also equivalent to other configurations, including the combination ANN-GP.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Learning and Intelligent Optimization. Revised Selected Papers
ISBN
978-3-030-92120-0
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
16
Strana od-do
167-182
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Athens / online
Datum konání akce
20. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000922798500015