Neighbourhood Semantics for Quantified Relevant Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00547631" target="_blank" >RIV/67985807:_____/22:00547631 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.1007/s10992-021-09637-1" target="_blank" >https://dx.doi.org/10.1007/s10992-021-09637-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10992-021-09637-1" target="_blank" >10.1007/s10992-021-09637-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neighbourhood Semantics for Quantified Relevant Logics
Popis výsledku v původním jazyce
The Mares-Goldblatt semantics for quantified relevant logics have been developed for first-order extensions of R, and a range of other relevant logics and modal extensions thereof. All such work has taken place in the ternary relation semantic framework, most famously developed by Sylvan (née Routley) and Meyer. In this paper, the Mares-Goldblatt technique for the interpretation of quantifiers is adapted to the more general neighbourhood semantic framework, developed by Sylvan, Meyer, and, more recently, Goble. This more algebraic semantics allows one to characterise a still wider range of logics, and provides the grist for some new results. To showcase this, we show, using some non-augmented models, that some quantified relevant logics are not conservatively extended by connectives the addition of which do conservatively extend the associated propositional logics, namely fusion and the dual implication. We close by proposing some further uses to which the neighbourhood Mares-Goldblatt semantics may be put.
Název v anglickém jazyce
Neighbourhood Semantics for Quantified Relevant Logics
Popis výsledku anglicky
The Mares-Goldblatt semantics for quantified relevant logics have been developed for first-order extensions of R, and a range of other relevant logics and modal extensions thereof. All such work has taken place in the ternary relation semantic framework, most famously developed by Sylvan (née Routley) and Meyer. In this paper, the Mares-Goldblatt technique for the interpretation of quantifiers is adapted to the more general neighbourhood semantic framework, developed by Sylvan, Meyer, and, more recently, Goble. This more algebraic semantics allows one to characterise a still wider range of logics, and provides the grist for some new results. To showcase this, we show, using some non-augmented models, that some quantified relevant logics are not conservatively extended by connectives the addition of which do conservatively extend the associated propositional logics, namely fusion and the dual implication. We close by proposing some further uses to which the neighbourhood Mares-Goldblatt semantics may be put.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ18-19162Y" target="_blank" >GJ18-19162Y: Neklasické logické modely informační dynamiky</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Philosophical Logic
ISSN
0022-3611
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
457-484
Kód UT WoS článku
000707963600001
EID výsledku v databázi Scopus
2-s2.0-85117148036