Propositional Dynamic Logic with Quantification over Regular Computation Sequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00553385" target="_blank" >RIV/67985807:_____/22:00553385 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-93100-1_19" target="_blank" >http://dx.doi.org/10.1007/978-3-030-93100-1_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-93100-1_19" target="_blank" >10.1007/978-3-030-93100-1_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Propositional Dynamic Logic with Quantification over Regular Computation Sequences
Popis výsledku v původním jazyce
We extend test-free regular propositional dynamic logic with operators expressing combinations of existential and universal quantifiers quantifying over computation sequences represented by a given regular expression and states accessible via these computation sequences. This extended language is able to express that there is a computation sequence represented by a given regular expression that leads only to states where a given formula is satisfied, or that for all computation sequences represented by a given regular expression there is a state accessible via the computation sequence where a given formula is satisfied. Such quantifier combinations are essential in expressing, for instance, that a given non-deterministic finite automaton accepts all words of a given regular language or that there is a specific sequence of actions instantiating a plan expressed by a regular expression that is guaranteed to accomplish a certain goal. The existential-universal quantifier combination is modelled by neighborhood functions. We prove that a rich fragment of our logic is decidable and EXPTIME -complete by embedding the fragment into deterministic propositional dynamic logic.
Název v anglickém jazyce
Propositional Dynamic Logic with Quantification over Regular Computation Sequences
Popis výsledku anglicky
We extend test-free regular propositional dynamic logic with operators expressing combinations of existential and universal quantifiers quantifying over computation sequences represented by a given regular expression and states accessible via these computation sequences. This extended language is able to express that there is a computation sequence represented by a given regular expression that leads only to states where a given formula is satisfied, or that for all computation sequences represented by a given regular expression there is a state accessible via the computation sequence where a given formula is satisfied. Such quantifier combinations are essential in expressing, for instance, that a given non-deterministic finite automaton accepts all words of a given regular language or that there is a specific sequence of actions instantiating a plan expressed by a regular expression that is guaranteed to accomplish a certain goal. The existential-universal quantifier combination is modelled by neighborhood functions. We prove that a rich fragment of our logic is decidable and EXPTIME -complete by embedding the fragment into deterministic propositional dynamic logic.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Logical Foundations of Computer Science. International Symposium, LFCS 2022, Deerfield Beach, FL, USA, January 10–13, 2022, Proceedings
ISBN
978-3-030-93099-8
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
15
Strana od-do
301-315
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Deerfield Beach / Virtual
Datum konání akce
10. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—