Cut distance identifying graphon parameters over weak* limits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00556339" target="_blank" >RIV/67985807:_____/22:00556339 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985840:_____/22:00556339
Výsledek na webu
<a href="https://doi.org/10.1016/j.jcta.2022.105615" target="_blank" >https://doi.org/10.1016/j.jcta.2022.105615</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2022.105615" target="_blank" >10.1016/j.jcta.2022.105615</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cut distance identifying graphon parameters over weak* limits
Popis výsledku v původním jazyce
The theory of graphons comes with the so-called cut norm and the derived cut distance. The cut norm is finer than the weak* topology (when considering the predual of L1-functions). Doležal and Hladký ((2019) [13]) showed, that given a sequence of graphons, a cut distance accumulation graphon can be pinpointed in the set of weak* accumulation points as a minimizer of the entropy. Motivated by this, we study graphon parameters with the property that their minimizers or maximizers identify cut distance accumulation points over the set of weak* accumulation points. We call such parameters cut distance identifying. Of particular importance are cut distance identifying parameters coming from homomorphism densities, t(H,⋅). This concept is closely related to the emerging field of graph norms, and the notions of the step Sidorenko property and the step forcing property introduced by Král', Martins, Pach and Wrochna ((2019) [25]). We prove that a connected graph is weakly norming if and only if it is step Sidorenko, and that if a graph is norming then it is step forcing. Further, we study convexity properties of cut distance identifying graphon parameters, and find a way to identify cut distance limits using spectra of graphons. We also show that continuous cut distance identifying graphon parameters have the <[removed]>, and thus can be used in the proof of the Frieze–Kannan regularity lemma.
Název v anglickém jazyce
Cut distance identifying graphon parameters over weak* limits
Popis výsledku anglicky
The theory of graphons comes with the so-called cut norm and the derived cut distance. The cut norm is finer than the weak* topology (when considering the predual of L1-functions). Doležal and Hladký ((2019) [13]) showed, that given a sequence of graphons, a cut distance accumulation graphon can be pinpointed in the set of weak* accumulation points as a minimizer of the entropy. Motivated by this, we study graphon parameters with the property that their minimizers or maximizers identify cut distance accumulation points over the set of weak* accumulation points. We call such parameters cut distance identifying. Of particular importance are cut distance identifying parameters coming from homomorphism densities, t(H,⋅). This concept is closely related to the emerging field of graph norms, and the notions of the step Sidorenko property and the step forcing property introduced by Král', Martins, Pach and Wrochna ((2019) [25]). We prove that a connected graph is weakly norming if and only if it is step Sidorenko, and that if a graph is norming then it is step forcing. Further, we study convexity properties of cut distance identifying graphon parameters, and find a way to identify cut distance limits using spectra of graphons. We also show that continuous cut distance identifying graphon parameters have the <[removed]>, and thus can be used in the proof of the Frieze–Kannan regularity lemma.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Combinatorial Theory. A
ISSN
0097-3165
e-ISSN
1096-0899
Svazek periodika
189
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
57
Strana od-do
105615
Kód UT WoS článku
000793602100001
EID výsledku v databázi Scopus
2-s2.0-85126595545