Dynamic Cantor Derivative Logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00557159" target="_blank" >RIV/67985807:_____/22:00557159 - isvavai.cz</a>
Výsledek na webu
<a href="https://drops.dagstuhl.de/opus/volltexte/2022/15739/pdf/LIPIcs-CSL-2022-19.pdf" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2022/15739/pdf/LIPIcs-CSL-2022-19.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CSL.2022.19" target="_blank" >10.4230/LIPIcs.CSL.2022.19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Cantor Derivative Logic
Popis výsledku v původním jazyce
Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as d-logics. Unlike logics based on the topological closure operator, d-logics have not previously been studied in the framework of dynamical systems, which are pairs (X, f) consisting of a topological space X equipped with a continuous function f : X → X. We introduce the logics wK4C, K4C and GLC and show that they all have the finite Kripke model property and are sound and complete with respect to the d-semantics in this dynamical setting. In particular, we prove that wK4C is the d-logic of all dynamic topological systems, K4C is the d-logic of all TD dynamic topological systems, and GLC is the d-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where f is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems wK4H, K4H and GLH. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological d-logics. Furthermore, our result for GLC constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation – something known to be impossible over the class of all spaces.
Název v anglickém jazyce
Dynamic Cantor Derivative Logic
Popis výsledku anglicky
Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as d-logics. Unlike logics based on the topological closure operator, d-logics have not previously been studied in the framework of dynamical systems, which are pairs (X, f) consisting of a topological space X equipped with a continuous function f : X → X. We introduce the logics wK4C, K4C and GLC and show that they all have the finite Kripke model property and are sound and complete with respect to the d-semantics in this dynamical setting. In particular, we prove that wK4C is the d-logic of all dynamic topological systems, K4C is the d-logic of all TD dynamic topological systems, and GLC is the d-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where f is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems wK4H, K4H and GLH. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological d-logics. Furthermore, our result for GLC constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation – something known to be impossible over the class of all spaces.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
30th EACSL Annual Conference on Computer Science Logic
ISBN
—
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
17
Strana od-do
"19:1"-"19:17"
Název nakladatele
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl
Místo konání akce
Göttingen / Virtual
Datum konání akce
14. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—