Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Text-to-Ontology Mapping via Natural Language Processing Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00565960" target="_blank" >RIV/67985807:_____/22:00565960 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ceur-ws.org/Vol-3226/paper3.pdf" target="_blank" >https://ceur-ws.org/Vol-3226/paper3.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Text-to-Ontology Mapping via Natural Language Processing Models

  • Popis výsledku v původním jazyce

    The paper presents work in progress attempting to solve a text-to-ontology mapping problem. While ontologies are being created as formal specifications of shared conceptualizations of application domains, different users often create different ontologies to represent the same domain. For better reasoning about concepts in scientific papers, it is desired to pick the ontology which best matches concepts present in the input text. We have started to automatize this process and attack the problem by utilizing state-of-the-art NLP tools and neural networks. Given a specific set of ontologies, we experiment with different training pipelines for NLP machine learning models with the aim to construct representative embeddings for the text-to-ontology matching task. We assess the final result through visualizing the latent space and exploring the mappings between an input text and ontology classes.

  • Název v anglickém jazyce

    Text-to-Ontology Mapping via Natural Language Processing Models

  • Popis výsledku anglicky

    The paper presents work in progress attempting to solve a text-to-ontology mapping problem. While ontologies are being created as formal specifications of shared conceptualizations of application domains, different users often create different ontologies to represent the same domain. For better reasoning about concepts in scientific papers, it is desired to pick the ontology which best matches concepts present in the input text. We have started to automatize this process and attack the problem by utilizing state-of-the-art NLP tools and neural networks. Given a specific set of ontologies, we experiment with different training pipelines for NLP machine learning models with the aim to construct representative embeddings for the text-to-ontology matching task. We assess the final result through visualizing the latent space and exploring the mappings between an input text and ontology classes.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 22st Conference Information Technologies – Applications and Theory (ITAT 2022)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    28-34

  • Název nakladatele

    Technical University & CreateSpace Independent Publishing

  • Místo vydání

    Aachen

  • Místo konání akce

    Zuberec

  • Datum konání akce

    23. 9. 2022

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku