Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Leveraging immunogenicity data and logistic regression for detection of covariate effects on vaccine efficacy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00576941" target="_blank" >RIV/67985807:_____/22:00576941 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Leveraging immunogenicity data and logistic regression for detection of covariate effects on vaccine efficacy

  • Popis výsledku v původním jazyce

    ZÁKLADNÍ ÚDAJE: PAGE 2022 Abstracts. Ljubljana: PAGE, 2022. [PAGE 2022: Population Approach Group Europe Meeting /30./. 28.06.2022-01.07.2022, Ljubljana]. ABSTRAKT: This work introduces a novel effort to use immune response biomarkers to help identify covariates affecting vaccine efficacy (VE). VE is defined as a proportional reduction in risk of disease for vaccinated subjects compared to control subjects and is often assessed by counting disease cases and non-cases in randomized controlled clinical trials [1]. VE can be affected by “covariates” (demographic characteristics of enrolled subjects), e.g., age or gender. Statistical significance of covariate effects on the binary clinical outcome (diseased versus non-diseased) is typically evaluated by logistic regression. In most efficacy trials, immune response post vaccination (immunogenicity) is measured in addition to the primary clinical endpoint. An immunogenicity biomarker that reliably predicts protection is a correlate of protection (CoP) [2]. It has been shown that CoP-based VE prediction is more precise than the case-count-based VE estimate [3]. Several approaches have been proposed to model the relationship between immunogenicity and probability of disease (PoD) [3-5].

  • Název v anglickém jazyce

    Leveraging immunogenicity data and logistic regression for detection of covariate effects on vaccine efficacy

  • Popis výsledku anglicky

    ZÁKLADNÍ ÚDAJE: PAGE 2022 Abstracts. Ljubljana: PAGE, 2022. [PAGE 2022: Population Approach Group Europe Meeting /30./. 28.06.2022-01.07.2022, Ljubljana]. ABSTRAKT: This work introduces a novel effort to use immune response biomarkers to help identify covariates affecting vaccine efficacy (VE). VE is defined as a proportional reduction in risk of disease for vaccinated subjects compared to control subjects and is often assessed by counting disease cases and non-cases in randomized controlled clinical trials [1]. VE can be affected by “covariates” (demographic characteristics of enrolled subjects), e.g., age or gender. Statistical significance of covariate effects on the binary clinical outcome (diseased versus non-diseased) is typically evaluated by logistic regression. In most efficacy trials, immune response post vaccination (immunogenicity) is measured in addition to the primary clinical endpoint. An immunogenicity biomarker that reliably predicts protection is a correlate of protection (CoP) [2]. It has been shown that CoP-based VE prediction is more precise than the case-count-based VE estimate [3]. Several approaches have been proposed to model the relationship between immunogenicity and probability of disease (PoD) [3-5].

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    30303 - Infectious Diseases

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů