Granger causality for compressively sensed sparse signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00572210" target="_blank" >RIV/67985807:_____/23:00572210 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.1103/PhysRevE.107.034308" target="_blank" >https://dx.doi.org/10.1103/PhysRevE.107.034308</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.107.034308" target="_blank" >10.1103/PhysRevE.107.034308</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Granger causality for compressively sensed sparse signals
Popis výsledku v původním jazyce
Compressed sensing is a scheme that allows for sparse signals to be acquired, transmitted, and stored using far fewer measurements than done by conventional means employing the Nyquist sampling theorem. Since many naturally occurring signals are sparse (in some domain), compressed sensing has rapidly seen popularity in a number of applied physics and engineering applications, particularly in designing signal and image acquisition strategies, e.g., magnetic resonance imaging, quantum state tomography, scanning tunneling microscopy, and analog to digital conversion technologies. Contemporaneously, causal inference has become an important tool for the analysis and understanding of processes and their interactions in many disciplines of science, especially those dealing with complex systems. Direct causal analysis for compressively sensed data is required to avoid the task of reconstructing the compressed data. Also, for some sparse signals, such as for sparse temporal data, it may be difficult to discover causal relations directly using available data-driven or model-free causality estimation techniques. In this work, we provide a mathematical proof that structured compressed sensing matrices, specifically circulant and Toeplitz, preserve causal relationships in the compressed signal domain, as measured by Granger causality (GC). We then verify this theorem on a number of bivariate and multivariate coupled sparse signal simulations which are compressed using these matrices. We also demonstrate a real world application of network causal connectivity estimation from sparse neural spike train recordings from rat prefrontal cortex. In addition to demonstrating the effectiveness of structured matrices for GC estimation from sparse signals, we also show a computational time advantage of the proposed strategy for causal inference from compressed signals of both sparse and regular autoregressive processes as compared to standard GC estimation from original signals.
Název v anglickém jazyce
Granger causality for compressively sensed sparse signals
Popis výsledku anglicky
Compressed sensing is a scheme that allows for sparse signals to be acquired, transmitted, and stored using far fewer measurements than done by conventional means employing the Nyquist sampling theorem. Since many naturally occurring signals are sparse (in some domain), compressed sensing has rapidly seen popularity in a number of applied physics and engineering applications, particularly in designing signal and image acquisition strategies, e.g., magnetic resonance imaging, quantum state tomography, scanning tunneling microscopy, and analog to digital conversion technologies. Contemporaneously, causal inference has become an important tool for the analysis and understanding of processes and their interactions in many disciplines of science, especially those dealing with complex systems. Direct causal analysis for compressively sensed data is required to avoid the task of reconstructing the compressed data. Also, for some sparse signals, such as for sparse temporal data, it may be difficult to discover causal relations directly using available data-driven or model-free causality estimation techniques. In this work, we provide a mathematical proof that structured compressed sensing matrices, specifically circulant and Toeplitz, preserve causal relationships in the compressed signal domain, as measured by Granger causality (GC). We then verify this theorem on a number of bivariate and multivariate coupled sparse signal simulations which are compressed using these matrices. We also demonstrate a real world application of network causal connectivity estimation from sparse neural spike train recordings from rat prefrontal cortex. In addition to demonstrating the effectiveness of structured matrices for GC estimation from sparse signals, we also show a computational time advantage of the proposed strategy for causal inference from compressed signals of both sparse and regular autoregressive processes as compared to standard GC estimation from original signals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-16066S" target="_blank" >GA19-16066S: Nelineární interakce a přenos informace v komplexních systémech s extrémními událostmi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
2470-0053
Svazek periodika
107
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
034308
Kód UT WoS článku
000955986000004
EID výsledku v databázi Scopus
2-s2.0-85151357039