Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Nalezeny alternativní kódy
RIV/00216208:11210/23:10470307 RIV/00216208:11110/23:10470307 RIV/00216208:11410/23:10470307
Výsledek na webu
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms
Popis výsledku v původním jazyce
This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classification tasks, including regularization methods, support vector machines, trees, random forests, back-propagation neural networks, and Naïve Bayes. Moreover, the ML algorithms are compared to the performance of domain experts. Using f-fold cross-validation and considering the root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches in a continuous item difficulty prediction. Within classifiers, random forests returned the highest extended predictive accuracy. We demonstrate that the ML algorithms implementing item text features can compete with predictions made by domain experts, and we suggest that they should be used to inform and improve these predictions, especially when item pre-testing is limited or unavailable. Future research is needed to study the performance of the ML algorithms using item text features on different item types and respondent populations.
Název v anglickém jazyce
Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms
Popis výsledku anglicky
This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classification tasks, including regularization methods, support vector machines, trees, random forests, back-propagation neural networks, and Naïve Bayes. Moreover, the ML algorithms are compared to the performance of domain experts. Using f-fold cross-validation and considering the root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches in a continuous item difficulty prediction. Within classifiers, random forests returned the highest extended predictive accuracy. We demonstrate that the ML algorithms implementing item text features can compete with predictions made by domain experts, and we suggest that they should be used to inform and improve these predictions, especially when item pre-testing is limited or unavailable. Future research is needed to study the performance of the ML algorithms using item text features on different item types and respondent populations.
Klasifikace
Druh
Jimp - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
30
Strana od-do
4104
Kód UT WoS článku
001084249000001
EID výsledku v databázi Scopus
2-s2.0-85176471034
Základní informace
Druh výsledku
Jimp - Článek v periodiku v databázi Web of Science
OECD FORD
Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Rok uplatnění
2023