Appropriate artificial intelligence algorithms will ultimately contribute to health equity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00579685" target="_blank" >RIV/67985807:_____/23:00579685 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/B978-0-443-21598-8.00008-7" target="_blank" >http://dx.doi.org/10.1016/B978-0-443-21598-8.00008-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-443-21598-8.00008-7" target="_blank" >10.1016/B978-0-443-21598-8.00008-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Appropriate artificial intelligence algorithms will ultimately contribute to health equity
Popis výsledku v původním jazyce
The ideals of an inclusive society with equal opportunities for all individuals without respect, for example, to race, gender, age, or social class have recently been promoted by the United Nations or the European Union (EPRS, 2022). Sociologists, psychologists, economists, or political scientists describe inclusion as the extent to which citizens feel a subjective acceptance within the society or the extent to which they feel being integrated. Inclusion goes hand in hand with environmental responsibility, sustainability, and resilience and is connected with equity and diversity (Shaw et al., 2012). Equity in healthcare (health equity, equity in health) is defined as healthcare with fair opportunities for participation and with equal chances leading to disparate health outcomes for all. Health equity represents an intensively discussed topic with a number of references giving current examples of exclusion (as the contrary of inclusion) and its societal impacts. Inclusive healthcare means equitable access for everybody and supporting health equity is an important aspect of the movement toward an inclusive society. The rapid progress of emerging artificial intelligence (AI) technologies with a potential for a radical shift of clinical practices naturally brings consequences on health equity and a number of recent papers already described particular negative effects of AI on health equity. In the literature, an increase in health inequities is expected (Krouse, 2020) in the near future as a consequence of increasing diversity in populations and also as a result of the COVID-19 pandemic.
Název v anglickém jazyce
Appropriate artificial intelligence algorithms will ultimately contribute to health equity
Popis výsledku anglicky
The ideals of an inclusive society with equal opportunities for all individuals without respect, for example, to race, gender, age, or social class have recently been promoted by the United Nations or the European Union (EPRS, 2022). Sociologists, psychologists, economists, or political scientists describe inclusion as the extent to which citizens feel a subjective acceptance within the society or the extent to which they feel being integrated. Inclusion goes hand in hand with environmental responsibility, sustainability, and resilience and is connected with equity and diversity (Shaw et al., 2012). Equity in healthcare (health equity, equity in health) is defined as healthcare with fair opportunities for participation and with equal chances leading to disparate health outcomes for all. Health equity represents an intensively discussed topic with a number of references giving current examples of exclusion (as the contrary of inclusion) and its societal impacts. Inclusive healthcare means equitable access for everybody and supporting health equity is an important aspect of the movement toward an inclusive society. The rapid progress of emerging artificial intelligence (AI) technologies with a potential for a radical shift of clinical practices naturally brings consequences on health equity and a number of recent papers already described particular negative effects of AI on health equity. In the literature, an increase in health inequities is expected (Krouse, 2020) in the near future as a consequence of increasing diversity in populations and also as a result of the COVID-19 pandemic.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/NU21-08-00432" target="_blank" >NU21-08-00432: Predikce funkčního vyústění schizofrenie z multimodálních neurozobrazovacích a klinických dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Artificial intelligence, Big data, blockchain and 5G for the digital transformation of the healthcare industry
ISBN
9780443215988
Počet stran výsledku
20
Strana od-do
153-172
Počet stran knihy
486
Název nakladatele
Academic Press / Elsevier
Místo vydání
Cambridge
Kód UT WoS kapitoly
—