Impact of time varying interaction: Formation and annihilation of extreme events in dynamical systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00580721" target="_blank" >RIV/67985807:_____/23:00580721 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0174366" target="_blank" >https://doi.org/10.1063/5.0174366</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0174366" target="_blank" >10.1063/5.0174366</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of time varying interaction: Formation and annihilation of extreme events in dynamical systems
Popis výsledku v původním jazyce
This study investigates the emergence of extreme events in two different coupled systems: the FitzHugh-Nagumo neuron model and the forced Liénard system, both based on time-varying interactions. The time-varying coupling function between the systems determines the duration and frequency of their interaction. Extreme events in the coupled system arise as a result of the influence of time-varying interactions within various parameter regions. We specifically focus on elucidating how the transition point between extreme events and regular events shifts in response to the duration of interaction time between the systems. By selecting the appropriate interaction time, we can effectively mitigate extreme events, which is highly advantageous for controlling undesired fluctuations in engineering applications. Furthermore, we extend our investigation to networks of oscillators, where the interactions among network elements are also time dependent. The proposed approach for coupled systems holds wide applicability to oscillator networks.
Název v anglickém jazyce
Impact of time varying interaction: Formation and annihilation of extreme events in dynamical systems
Popis výsledku anglicky
This study investigates the emergence of extreme events in two different coupled systems: the FitzHugh-Nagumo neuron model and the forced Liénard system, both based on time-varying interactions. The time-varying coupling function between the systems determines the duration and frequency of their interaction. Extreme events in the coupled system arise as a result of the influence of time-varying interactions within various parameter regions. We specifically focus on elucidating how the transition point between extreme events and regular events shifts in response to the duration of interaction time between the systems. By selecting the appropriate interaction time, we can effectively mitigate extreme events, which is highly advantageous for controlling undesired fluctuations in engineering applications. Furthermore, we extend our investigation to networks of oscillators, where the interactions among network elements are also time dependent. The proposed approach for coupled systems holds wide applicability to oscillator networks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos
ISSN
1054-1500
e-ISSN
1089-7682
Svazek periodika
33
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
123134
Kód UT WoS článku
001133614100002
EID výsledku v databázi Scopus
2-s2.0-85181086220