Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using Paraphrasers to Detect Duplicities in Ontologies

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00580726" target="_blank" >RIV/67985807:_____/23:00580726 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/23:00368478

  • Výsledek na webu

    <a href="https://doi.org/10.5220/0012164500003598" target="_blank" >https://doi.org/10.5220/0012164500003598</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0012164500003598" target="_blank" >10.5220/0012164500003598</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using Paraphrasers to Detect Duplicities in Ontologies

  • Popis výsledku v původním jazyce

    This paper contains a machine-learning-based approach to detect duplicities in ontologies. Ontologies are formal specifications of shared conceptualizations of application domains. Merging and enhancing ontologies may cause the introduction of duplicities into them. The approach to duplicities proposed in this work presents a solution that does not need manual corrections by domain experts. Source texts consist of short textual descriptions from considered ontologies, which have been extracted and automatically paraphrased to receive pairs of sentences with the same or a very close meaning. The sentences in the received dataset have been embedded into Euclidean vector space. The classification task was to determine whether a given pair of sentence embeddings is semantically equivalent or different. The results have been tested using test sets generated by paraphrases as well as on a small real-world ontology. We also compared solutions by the most similar existing approach, based on GloVe and WordNet, with solutions by our approach. According to all considered metrics, our approach yielded better results than the compared approach. From the results of both experiments, the most suitable for the detection of duplicities in ontologies is the combination of BERT with support vector machines. Finally, we performed an ablation study to validate whether all paraphrasers used to create the training set for the classification were essential.

  • Název v anglickém jazyce

    Using Paraphrasers to Detect Duplicities in Ontologies

  • Popis výsledku anglicky

    This paper contains a machine-learning-based approach to detect duplicities in ontologies. Ontologies are formal specifications of shared conceptualizations of application domains. Merging and enhancing ontologies may cause the introduction of duplicities into them. The approach to duplicities proposed in this work presents a solution that does not need manual corrections by domain experts. Source texts consist of short textual descriptions from considered ontologies, which have been extracted and automatically paraphrased to receive pairs of sentences with the same or a very close meaning. The sentences in the received dataset have been embedded into Euclidean vector space. The classification task was to determine whether a given pair of sentence embeddings is semantically equivalent or different. The results have been tested using test sets generated by paraphrases as well as on a small real-world ontology. We also compared solutions by the most similar existing approach, based on GloVe and WordNet, with solutions by our approach. According to all considered metrics, our approach yielded better results than the compared approach. From the results of both experiments, the most suitable for the detection of duplicities in ontologies is the combination of BERT with support vector machines. Finally, we performed an ablation study to validate whether all paraphrasers used to create the training set for the classification were essential.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 15th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2

  • ISBN

    978-989-758-671-2

  • ISSN

    2184-3228

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    40-49

  • Název nakladatele

    SciTePress

  • Místo vydání

    Setubal

  • Místo konání akce

    Rome / hybrid

  • Datum konání akce

    13. 11. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku