Using Paraphrasers to Detect Duplicities in Ontologies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00580726" target="_blank" >RIV/67985807:_____/23:00580726 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/23:00368478
Výsledek na webu
<a href="https://doi.org/10.5220/0012164500003598" target="_blank" >https://doi.org/10.5220/0012164500003598</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012164500003598" target="_blank" >10.5220/0012164500003598</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Paraphrasers to Detect Duplicities in Ontologies
Popis výsledku v původním jazyce
This paper contains a machine-learning-based approach to detect duplicities in ontologies. Ontologies are formal specifications of shared conceptualizations of application domains. Merging and enhancing ontologies may cause the introduction of duplicities into them. The approach to duplicities proposed in this work presents a solution that does not need manual corrections by domain experts. Source texts consist of short textual descriptions from considered ontologies, which have been extracted and automatically paraphrased to receive pairs of sentences with the same or a very close meaning. The sentences in the received dataset have been embedded into Euclidean vector space. The classification task was to determine whether a given pair of sentence embeddings is semantically equivalent or different. The results have been tested using test sets generated by paraphrases as well as on a small real-world ontology. We also compared solutions by the most similar existing approach, based on GloVe and WordNet, with solutions by our approach. According to all considered metrics, our approach yielded better results than the compared approach. From the results of both experiments, the most suitable for the detection of duplicities in ontologies is the combination of BERT with support vector machines. Finally, we performed an ablation study to validate whether all paraphrasers used to create the training set for the classification were essential.
Název v anglickém jazyce
Using Paraphrasers to Detect Duplicities in Ontologies
Popis výsledku anglicky
This paper contains a machine-learning-based approach to detect duplicities in ontologies. Ontologies are formal specifications of shared conceptualizations of application domains. Merging and enhancing ontologies may cause the introduction of duplicities into them. The approach to duplicities proposed in this work presents a solution that does not need manual corrections by domain experts. Source texts consist of short textual descriptions from considered ontologies, which have been extracted and automatically paraphrased to receive pairs of sentences with the same or a very close meaning. The sentences in the received dataset have been embedded into Euclidean vector space. The classification task was to determine whether a given pair of sentence embeddings is semantically equivalent or different. The results have been tested using test sets generated by paraphrases as well as on a small real-world ontology. We also compared solutions by the most similar existing approach, based on GloVe and WordNet, with solutions by our approach. According to all considered metrics, our approach yielded better results than the compared approach. From the results of both experiments, the most suitable for the detection of duplicities in ontologies is the combination of BERT with support vector machines. Finally, we performed an ablation study to validate whether all paraphrasers used to create the training set for the classification were essential.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 15th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2
ISBN
978-989-758-671-2
ISSN
2184-3228
e-ISSN
—
Počet stran výsledku
10
Strana od-do
40-49
Název nakladatele
SciTePress
Místo vydání
Setubal
Místo konání akce
Rome / hybrid
Datum konání akce
13. 11. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—