Recovery and resilience of European temperate forests after large and severe disturbances
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00583431" target="_blank" >RIV/67985807:_____/24:00583431 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985939:_____/24:00583431 RIV/60460709:41320/24:100072 RIV/60460709:41330/24:100072
Výsledek na webu
<a href="https://doi.org/10.1111/gcb.17159" target="_blank" >https://doi.org/10.1111/gcb.17159</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/gcb.17159" target="_blank" >10.1111/gcb.17159</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recovery and resilience of European temperate forests after large and severe disturbances
Popis výsledku v původním jazyce
Recent observations of tree regeneration failures following large and severe disturbances, particularly under warm and dry conditions, have raised concerns about the resilience of forest ecosystems and their recovery dynamics in the face of climate change. We investigated the recovery of temperate forests in Europe after large and severe disturbance events (i.e., resulting in more than 70% canopy loss in patches larger than 1 ha), with a range of one to five decades since the disturbance occurred. The study included 143 sites of different forest types and management practices that had experienced 28 disturbance events, including windthrow (132 sites), fire (six sites), and bark beetle outbreaks (five sites). We focused on assessing post-disturbance tree density, structure, and composition as key indicators of forest resilience. We compared post-disturbance height-weighted densities with site-specific pre-disturbance densities to qualitatively assess the potential for structural and compositional recovery, overall and for dominant tree species, respectively. Additionally, we analyzed the ecological drivers of post-windthrow tree density, such as forest management, topography, and post-disturbance aridity, using a series of generalized additive models. The descriptive results show that European temperate forests have been resilient to past large and severe disturbances and concurrent climate conditions, albeit with lower resilience to high-severity fire compared with other disturbance agents. Across sites and disturbance agents, the potential for structural recovery was greater than that of compositional recovery, with a large proportion of plots becoming dominated by early-successional species after disturbance. The models showed that increasing elevation and salvage logging negatively affect post-windthrow regeneration, particularly for late-successional species, while pioneer species are negatively affected by increasing summer aridity. These findings provide a key baseline for assessing future recovery and resilience following the recent occurrence of widespread disturbance in the region and in anticipation of future conditions characterized by increasing heat and drought stress.
Název v anglickém jazyce
Recovery and resilience of European temperate forests after large and severe disturbances
Popis výsledku anglicky
Recent observations of tree regeneration failures following large and severe disturbances, particularly under warm and dry conditions, have raised concerns about the resilience of forest ecosystems and their recovery dynamics in the face of climate change. We investigated the recovery of temperate forests in Europe after large and severe disturbance events (i.e., resulting in more than 70% canopy loss in patches larger than 1 ha), with a range of one to five decades since the disturbance occurred. The study included 143 sites of different forest types and management practices that had experienced 28 disturbance events, including windthrow (132 sites), fire (six sites), and bark beetle outbreaks (five sites). We focused on assessing post-disturbance tree density, structure, and composition as key indicators of forest resilience. We compared post-disturbance height-weighted densities with site-specific pre-disturbance densities to qualitatively assess the potential for structural and compositional recovery, overall and for dominant tree species, respectively. Additionally, we analyzed the ecological drivers of post-windthrow tree density, such as forest management, topography, and post-disturbance aridity, using a series of generalized additive models. The descriptive results show that European temperate forests have been resilient to past large and severe disturbances and concurrent climate conditions, albeit with lower resilience to high-severity fire compared with other disturbance agents. Across sites and disturbance agents, the potential for structural recovery was greater than that of compositional recovery, with a large proportion of plots becoming dominated by early-successional species after disturbance. The models showed that increasing elevation and salvage logging negatively affect post-windthrow regeneration, particularly for late-successional species, while pioneer species are negatively affected by increasing summer aridity. These findings provide a key baseline for assessing future recovery and resilience following the recent occurrence of widespread disturbance in the region and in anticipation of future conditions characterized by increasing heat and drought stress.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Global Change Biology
ISSN
1354-1013
e-ISSN
1365-2486
Svazek periodika
30
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
e17159
Kód UT WoS článku
001177413700002
EID výsledku v databázi Scopus
2-s2.0-85184251684