Kleene Algebra of Weighted Programs With Domain
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00584357" target="_blank" >RIV/67985807:_____/24:00584357 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-031-51777-8_4" target="_blank" >http://dx.doi.org/10.1007/978-3-031-51777-8_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-51777-8_4" target="_blank" >10.1007/978-3-031-51777-8_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kleene Algebra of Weighted Programs With Domain
Popis výsledku v původním jazyce
Weighted programs were recently introduced by Batz et al. (Proc. ACM Program. Lang. 2022) as a generalization of probabilistic programs which can also represent optimization problems and, in general, programs whose execution traces carry some sort of weight. Batzet al. show that a weighted version of Dijkstra’s weakest precondition operator can be used to reason about the competitive ratios of weighted programs. In this paper we study a propositional abstraction of weighted programs with three main contributions. First, we formulate a semantics for weighted programs with the weighted weakest precondition operator based on functions from multimonoids to quantales. Second, we show that the weighted weakest precondition operator corresponds to a generalization of the domain operator known from Kleene algebra with domain, and we study the properties of the generalized domain operator. Third, we formulate a weighted version of Kleene algebra with domain as a framework for reasoning about weighted programs with weakest precondition in an abstract setting.
Název v anglickém jazyce
Kleene Algebra of Weighted Programs With Domain
Popis výsledku anglicky
Weighted programs were recently introduced by Batz et al. (Proc. ACM Program. Lang. 2022) as a generalization of probabilistic programs which can also represent optimization problems and, in general, programs whose execution traces carry some sort of weight. Batzet al. show that a weighted version of Dijkstra’s weakest precondition operator can be used to reason about the competitive ratios of weighted programs. In this paper we study a propositional abstraction of weighted programs with three main contributions. First, we formulate a semantics for weighted programs with the weighted weakest precondition operator based on functions from multimonoids to quantales. Second, we show that the weighted weakest precondition operator corresponds to a generalization of the domain operator known from Kleene algebra with domain, and we study the properties of the generalized domain operator. Third, we formulate a weighted version of Kleene algebra with domain as a framework for reasoning about weighted programs with weakest precondition in an abstract setting.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-16111S" target="_blank" >GA22-16111S: GRADLACT: Stupňované logiky konání</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Dynamic Logic. New Trends and Applications. Revised Selected Papers
ISBN
978-3-031-51777-8
ISSN
1611-3349
e-ISSN
1611-3349
Počet stran výsledku
16
Strana od-do
52-67
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Tbilisi
Datum konání akce
15. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001207227000004