Learning Guided Automated Reasoning: A Brief Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00584859" target="_blank" >RIV/67985807:_____/24:00584859 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/24:00380966
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-61716-4_4" target="_blank" >https://doi.org/10.1007/978-3-031-61716-4_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-61716-4_4" target="_blank" >10.1007/978-3-031-61716-4_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Guided Automated Reasoning: A Brief Survey
Popis výsledku v původním jazyce
Automated theorem provers and formal proof assistants are general reasoning systems that are in theory capable of proving arbitrarily hard theorems, thus solving arbitrary problems reducible to mathematics and logical reasoning. In practice, such systems however face large combinatorial explosion, and therefore include many heuristics and choice points that considerably influence their performance. This is an opportunity for trained machine learning predictors, which can guide the work of such reasoning systems. Conversely, deductive search supported by the notion of logically valid proof allows one to train machine learning systems on large reasoning corpora. Such bodies of proof are usually correct by construction and when combined with more and more precise trained guidance they can be boostrapped into very large corpora, with increasingly long reasoning chains and possibly novel proof ideas. In this paper we provide an overview of several automated reasoning and theorem proving domains and the learning and AI methods that have been so far developed for them. These include premise selection, proof guidance in several settings, AI systems and feedback loops iterating between reasoning and learning, and symbolic classification problems.
Název v anglickém jazyce
Learning Guided Automated Reasoning: A Brief Survey
Popis výsledku anglicky
Automated theorem provers and formal proof assistants are general reasoning systems that are in theory capable of proving arbitrarily hard theorems, thus solving arbitrary problems reducible to mathematics and logical reasoning. In practice, such systems however face large combinatorial explosion, and therefore include many heuristics and choice points that considerably influence their performance. This is an opportunity for trained machine learning predictors, which can guide the work of such reasoning systems. Conversely, deductive search supported by the notion of logically valid proof allows one to train machine learning systems on large reasoning corpora. Such bodies of proof are usually correct by construction and when combined with more and more precise trained guidance they can be boostrapped into very large corpora, with increasingly long reasoning chains and possibly novel proof ideas. In this paper we provide an overview of several automated reasoning and theorem proving domains and the learning and AI methods that have been so far developed for them. These include premise selection, proof guidance in several settings, AI systems and feedback loops iterating between reasoning and learning, and symbolic classification problems.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Logics and Type Systems in Theory and Practice. Essays in Honor of the 60th Birthday of Herman Geuvers
ISBN
978-3-031-61715-7
Počet stran výsledku
30
Strana od-do
54-83
Počet stran knihy
273
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
001283291600005