Inference through innovation processes tested in the authorship attribution task
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00599642" target="_blank" >RIV/67985807:_____/24:00599642 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1038/s42005-024-01714-6" target="_blank" >https://doi.org/10.1038/s42005-024-01714-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s42005-024-01714-6" target="_blank" >10.1038/s42005-024-01714-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inference through innovation processes tested in the authorship attribution task
Popis výsledku v původním jazyce
Urn models for innovation capture fundamental empirical laws shared by several real-world processes. The so-called urn model with triggering includes, as particular cases, the urn representation of the two-parameter Poisson-Dirichlet process and the Dirichlet process, seminal in Bayesian non-parametric inference. In this work, we leverage this connection to introduce a general approach for quantifying closeness between symbolic sequences and test it within the framework of the authorship attribution problem. The method demonstrates high accuracy when compared to other related methods in different scenarios, featuring a substantial gain in computational efficiency and theoretical transparency. Beyond the practical convenience, this work demonstrates how the recently established connection between urn models and non-parametric Bayesian inference can pave the way for designing more efficient inference methods. In particular, the hybrid approach that we propose allows us to relax the exchangeability hypothesis, which can be particularly relevant for systems exhibiting complex correlation patterns and non-stationary dynamics.
Název v anglickém jazyce
Inference through innovation processes tested in the authorship attribution task
Popis výsledku anglicky
Urn models for innovation capture fundamental empirical laws shared by several real-world processes. The so-called urn model with triggering includes, as particular cases, the urn representation of the two-parameter Poisson-Dirichlet process and the Dirichlet process, seminal in Bayesian non-parametric inference. In this work, we leverage this connection to introduce a general approach for quantifying closeness between symbolic sequences and test it within the framework of the authorship attribution problem. The method demonstrates high accuracy when compared to other related methods in different scenarios, featuring a substantial gain in computational efficiency and theoretical transparency. Beyond the practical convenience, this work demonstrates how the recently established connection between urn models and non-parametric Bayesian inference can pave the way for designing more efficient inference methods. In particular, the hybrid approach that we propose allows us to relax the exchangeability hypothesis, which can be particularly relevant for systems exhibiting complex correlation patterns and non-stationary dynamics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-17211S" target="_blank" >GA21-17211S: Síťové modely komplexních systémů: od korelačních grafů k informačním hypergrafům</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMMUNICATIONS PHYSICS
ISSN
2399-3650
e-ISSN
2399-3650
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
300
Kód UT WoS článku
001306596800002
EID výsledku v databázi Scopus
2-s2.0-85203270503