Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fine-tuning language models to predict item difficulty from wording

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00601131" target="_blank" >RIV/67985807:_____/24:00601131 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.psychometricsociety.org/sites/main/files/file-attachments/imps2024_abstracts.pdf?1720733361#page=347" target="_blank" >https://www.psychometricsociety.org/sites/main/files/file-attachments/imps2024_abstracts.pdf?1720733361#page=347</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fine-tuning language models to predict item difficulty from wording

  • Popis výsledku v původním jazyce

    ZÁKLADNÍ ÚDAJE: IMPS 2024 Abstracts. Prague: IMPS, 2024. s. 309-309. [IMPS 2024: Annual Meeting of the Psychometric Society. 16.07.2024-19.07.2024, Prague]. ABSTRAKT: In the domain of educational assessment, crafting items with robust psychometric properties poses significant challenges, especially when pretesting on a pilot population is not feasible. This necessitates reliable methods for estimating difficulty (and possibly other parameters) based solely on item wording. Traditionally, this involves extracting a wide array of theory-driven text features—ranging from basic descriptive statistics to readability indices—as predictors of item difficulty. To derive these text features, item wordings must first undergo extensive preprocessing, which results in a loss of crucial information (e.g., due to lemmatization). Recently, the focus has shifted towards predictors based on word embeddings, for instance, to better capture the semantics (Štěpánek et al., 2023). However, reflecting the advent of large language models (LLMs) such as transformers, exploring their adaptation for item difficulty prediction presents a promising opportunity. Although these models were originally trained on large corpora of textual data for tasks like masked text prediction, we can leverage the phenomenon of transfer learning and fine-tune these pre-trained LLMs for the task of item difficulty prediction. Thus, we may benefit from the nuanced language representation of modern LLMs without any loss of information along the way and without the need for any separate statistical model. In this work, we propose and test an innovative approach that utilizes the fine-tuning of pre-trained LLMs to estimate item difficulty from wording. By integrating these modern LLMs, we aim to achieve more accurate predictions of item characteristics, potentially aiding in the process of educational assessment development and evaluation.

  • Název v anglickém jazyce

    Fine-tuning language models to predict item difficulty from wording

  • Popis výsledku anglicky

    ZÁKLADNÍ ÚDAJE: IMPS 2024 Abstracts. Prague: IMPS, 2024. s. 309-309. [IMPS 2024: Annual Meeting of the Psychometric Society. 16.07.2024-19.07.2024, Prague]. ABSTRAKT: In the domain of educational assessment, crafting items with robust psychometric properties poses significant challenges, especially when pretesting on a pilot population is not feasible. This necessitates reliable methods for estimating difficulty (and possibly other parameters) based solely on item wording. Traditionally, this involves extracting a wide array of theory-driven text features—ranging from basic descriptive statistics to readability indices—as predictors of item difficulty. To derive these text features, item wordings must first undergo extensive preprocessing, which results in a loss of crucial information (e.g., due to lemmatization). Recently, the focus has shifted towards predictors based on word embeddings, for instance, to better capture the semantics (Štěpánek et al., 2023). However, reflecting the advent of large language models (LLMs) such as transformers, exploring their adaptation for item difficulty prediction presents a promising opportunity. Although these models were originally trained on large corpora of textual data for tasks like masked text prediction, we can leverage the phenomenon of transfer learning and fine-tune these pre-trained LLMs for the task of item difficulty prediction. Thus, we may benefit from the nuanced language representation of modern LLMs without any loss of information along the way and without the need for any separate statistical model. In this work, we propose and test an innovative approach that utilizes the fine-tuning of pre-trained LLMs to estimate item difficulty from wording. By integrating these modern LLMs, we aim to achieve more accurate predictions of item characteristics, potentially aiding in the process of educational assessment development and evaluation.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004583" target="_blank" >EH22_008/0004583: Excelentní výzkum v oblasti digitálních technologií a wellbeingu</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů