Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Bayesian model for age at death with cohort effects

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00601544" target="_blank" >RIV/67985807:_____/24:00601544 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4054/DemRes.2024.51.33" target="_blank" >https://doi.org/10.4054/DemRes.2024.51.33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4054/DemRes.2024.51.33" target="_blank" >10.4054/DemRes.2024.51.33</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Bayesian model for age at death with cohort effects

  • Popis výsledku v původním jazyce

    BACKGROUND: Ongoing mortality trends affect the distribution of age at death, typically described by parametric models. Cohort effects can markedly perturb the distribution and reduce the fit of such models, and this needs to be specifically taken into account. OBJECTIVE: This study examines the integration of cohort effects in a three-component parametric model for the age-at-death distribution, applying it to data with significant cohort effects. METHODS: We employed a mixture model with a half-normal and two skew-normal components, adapted to a Bayesian framework to include multiplicative cohort effects. The model was applied to data from five Italian regions, with cohort effects estimated for the 1915-1925 cohorts. RESULTS: Incorporating cohort effects significantly improved the model's fit. A notable finding of the comprehensive model is the shift in Italy from premature to middle-age mortality components over time. Our results also demonstrate the tendency for mortality structures to spatially homogenize over time in Italy. CONCLUSIONS: The study underscores the importance of including cohort effects in mortality models in order to provide a more detailed picture of mortality trends. CONTRIBUTION: This work introduces a novel application of a Bayesian mixture model with cohort effects, offering enhanced tools for demographic analysis and new insights into the evolution of mortality components in Italy. This approach is general but fully formalized and hence it can be readily used for demographic studies in other regions as well.

  • Název v anglickém jazyce

    A Bayesian model for age at death with cohort effects

  • Popis výsledku anglicky

    BACKGROUND: Ongoing mortality trends affect the distribution of age at death, typically described by parametric models. Cohort effects can markedly perturb the distribution and reduce the fit of such models, and this needs to be specifically taken into account. OBJECTIVE: This study examines the integration of cohort effects in a three-component parametric model for the age-at-death distribution, applying it to data with significant cohort effects. METHODS: We employed a mixture model with a half-normal and two skew-normal components, adapted to a Bayesian framework to include multiplicative cohort effects. The model was applied to data from five Italian regions, with cohort effects estimated for the 1915-1925 cohorts. RESULTS: Incorporating cohort effects significantly improved the model's fit. A notable finding of the comprehensive model is the shift in Italy from premature to middle-age mortality components over time. Our results also demonstrate the tendency for mortality structures to spatially homogenize over time in Italy. CONCLUSIONS: The study underscores the importance of including cohort effects in mortality models in order to provide a more detailed picture of mortality trends. CONTRIBUTION: This work introduces a novel application of a Bayesian mixture model with cohort effects, offering enhanced tools for demographic analysis and new insights into the evolution of mortality components in Italy. This approach is general but fully formalized and hence it can be readily used for demographic studies in other regions as well.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Demographic Research

  • ISSN

    1435-9871

  • e-ISSN

    1435-9871

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    October 2024

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    42

  • Strana od-do

    1017-1058

  • Kód UT WoS článku

    001343368300001

  • EID výsledku v databázi Scopus