A Bayesian model for age at death with cohort effects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00601544" target="_blank" >RIV/67985807:_____/24:00601544 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4054/DemRes.2024.51.33" target="_blank" >https://doi.org/10.4054/DemRes.2024.51.33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4054/DemRes.2024.51.33" target="_blank" >10.4054/DemRes.2024.51.33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Bayesian model for age at death with cohort effects
Popis výsledku v původním jazyce
BACKGROUND: Ongoing mortality trends affect the distribution of age at death, typically described by parametric models. Cohort effects can markedly perturb the distribution and reduce the fit of such models, and this needs to be specifically taken into account. OBJECTIVE: This study examines the integration of cohort effects in a three-component parametric model for the age-at-death distribution, applying it to data with significant cohort effects. METHODS: We employed a mixture model with a half-normal and two skew-normal components, adapted to a Bayesian framework to include multiplicative cohort effects. The model was applied to data from five Italian regions, with cohort effects estimated for the 1915-1925 cohorts. RESULTS: Incorporating cohort effects significantly improved the model's fit. A notable finding of the comprehensive model is the shift in Italy from premature to middle-age mortality components over time. Our results also demonstrate the tendency for mortality structures to spatially homogenize over time in Italy. CONCLUSIONS: The study underscores the importance of including cohort effects in mortality models in order to provide a more detailed picture of mortality trends. CONTRIBUTION: This work introduces a novel application of a Bayesian mixture model with cohort effects, offering enhanced tools for demographic analysis and new insights into the evolution of mortality components in Italy. This approach is general but fully formalized and hence it can be readily used for demographic studies in other regions as well.
Název v anglickém jazyce
A Bayesian model for age at death with cohort effects
Popis výsledku anglicky
BACKGROUND: Ongoing mortality trends affect the distribution of age at death, typically described by parametric models. Cohort effects can markedly perturb the distribution and reduce the fit of such models, and this needs to be specifically taken into account. OBJECTIVE: This study examines the integration of cohort effects in a three-component parametric model for the age-at-death distribution, applying it to data with significant cohort effects. METHODS: We employed a mixture model with a half-normal and two skew-normal components, adapted to a Bayesian framework to include multiplicative cohort effects. The model was applied to data from five Italian regions, with cohort effects estimated for the 1915-1925 cohorts. RESULTS: Incorporating cohort effects significantly improved the model's fit. A notable finding of the comprehensive model is the shift in Italy from premature to middle-age mortality components over time. Our results also demonstrate the tendency for mortality structures to spatially homogenize over time in Italy. CONCLUSIONS: The study underscores the importance of including cohort effects in mortality models in order to provide a more detailed picture of mortality trends. CONTRIBUTION: This work introduces a novel application of a Bayesian mixture model with cohort effects, offering enhanced tools for demographic analysis and new insights into the evolution of mortality components in Italy. This approach is general but fully formalized and hence it can be readily used for demographic studies in other regions as well.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Demographic Research
ISSN
1435-9871
e-ISSN
1435-9871
Svazek periodika
51
Číslo periodika v rámci svazku
October 2024
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
42
Strana od-do
1017-1058
Kód UT WoS článku
001343368300001
EID výsledku v databázi Scopus
—